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Formation of floating water bridges
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dielectric susceptibility ǫ 81

surface tension σs 7.27×10−2N/m

viscosity η 1.5×10−3Ns/m2

conductivity of

clean water σ0 5×10−6A/Vm

molecular conductivity

of NaCl λ 12.6×10−3Am2/Vmol

heat capacity cp 4.187 J/gK
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Theoretical questions and concept

1. How is the electric field influencing the height zmax water can creep up?

2. What is the radius R(x) along the bridge?

3. What is the form z = f (x) of the water bridge?

4. What are the static and dynamical constraints for possible bridge forma-
tion?

Answers in terms of 4 parameters:

1. capillary height a =
√

2σs
ρg = 3.8mm (surface tension σs, particle density

ρ, gravity g)

2. creeping height b(E) = ǫ0(ǫ−1)E2

ρg = 7.22Ē2 cm (electric field Ē in units

of 104V/cm)

3. dimensionless ratio of field-force on charges to gravity c(ρc, E) = ρcE
ρg =

15.97Ēρ̄c (charge density ρ̄c in units of ng/l)

4. characteristic velocity for dynamical consideration u0 =
σs
16η ≈ 3.02m/s

Problem of Ohmic picture

If Ohmic transport would be correct: j = ρv = σE → E ∼ v
-since incompressible Av = const → E ∼ 1/A

• constant current density contradicts larger velocity when diameter smaller

Two possible solutions:
1. Accept E ∼ 1/A, but D = ǫǫ0E constant → ǫ ∼ A, unlikely
2. Non-Omic picture, we will get j ∼ c1E + c2E
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Two fluid picture, charges drag neutral molecules +

+

+

1. Creeping height, 2. Radius

From ressure tensor and En
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1. Maximal height: z = b
2+

√

b2

4 +a2(1−sin θ) ≤ b
2+

√

b2

4 +a2 = zmax

• without electric field maximal creeping height is capillary length a
• very high fields lead to field-dependent length b

2. Radius of bridge at beaker: equating pressure by surface tension σs
R with

gravitational force density ρgh ≈ ρg2R:

R ≈ a
2 →

1
2

(

b
2+

√

b2

4 +a2
)

Mass flow of the bridge

laminar (convection u∇u 0 in Navier Stokes eq. η∇2
u−∇p + ρcE = 0

gradient of electric pressure −∇p = ǫ0(ǫ−1)E2

2L = b
2Lρg. solution u(r) −

u(R) = 2u0
(

b
2L + c

)

(

1− r2

R2

)

;
b(E) = ǫ0(ǫ−1)E2

ρg

c(ρc, E) = ρcE
ρg

mean mass current

I = 2πρ
R
∫

0

drr[u(r)− u(R)] ≡

ρvπR2

mean velocity

v = u0

(

b

2L
+ c

)

0 1 2 3 4 5
E [kV/cm]

0

20

40

60

80

100

I
 [
m

l/
s
]

ρ
c
=0 ng/l

ρ
c
=1 ng/l

L=1cm L=2cm

•Ratio of field-dependent creeping height b to bridge length determines

mean velocity together with dynamical bulk charges c

AIP Advances 2 (2012) 022146: The effect of electromagnetic fields on
a charged catenary

Phys. Rev. E 86 (2012) 026302: Theory of water and charged liquid

bridges

Water 2017, 9(2017), 353: Reversed currents in charged liquid bridges

Profile of floating bridge

neglect viscous term,
Bernoulli equation
f(x)−cx = v2−v2(x)

2g
+a− a2

2R(x)

radius from
R(x)2v(x) = R2v

above: shape
middle: radius
bottom: velocity

-0.08

-0.06

-0.04

-0.02

0

f 
[L

]

0.16

0.17

0.18

0.19

0.2

r 
[L

]

0 0.2 0.4 0.6 0.8 1
x[L]

4

4.5

5

5.5

6

6.5

v
 [
m

/s
]

no bulk charge: c =
0, b = 1.5cm

-0,2

-0,15

-0,1

-0,05

0

f 
[L

]

c=1
c=0

0,1

0,12

0,14

0,16

0,18

0,2

r 
[L

]

0 0,2 0,4 0,6 0,8 1
x[L]

0

10

20

30

40

v
 [
m

/s
]

bulk charge: c = 1,
b = 1cm

3. Shape, effect of e.m. fields on charged catenary

center of mass line z = f (x) with f (0) = f (L) = 0
gravity ρgf , volume tension ρgb, force density by dynamical

charges ρcEx
L
∫

0

F(x)dx = ρg
L
∫

0

(f (x) + b − cx)
√

1 + f ′2dx →

extr.
b(E) = ǫ0(ǫ−1)E2

ρg

c(ρc, E) = ρcE
ρg

New solution (t ∈ (0, L))

f (t) =
1

1+c2

{

c t+ξ

[

cosh

(

t

ξ
−Ld

2ξ

)

−cosh

(

Ld

2ξ

)]}

x(t) = t− cf (t)

with d = 2 ξ
Larcosh

b
ξ and ξ to be the solution of c = cm(ξ, b) =

−2ξ
L sinh L

2ξ

(

b
ξ sinh

L
2ξ−

√

b2

ξ2
− 1 cosh L

2ξ

)

without bulk charges,

c = 0, d = 1, solution just well known catenary
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b = 1, 2 (left, right) corresponding to the maximal values cm = 0.41, 1.62
uncharged catenary (dashed) and c = cm(0.5, 0.75, 0.999)

J. Woisetschläger et al., Exp Fluids 52 (2012) 193; Á. G. Maŕın, D. Lohse, Phys. Fluids 22 (2010) 122104

Static stability

ξ solution of c = cm(ξ, b)

with b(E) = ǫ0(ǫ−1)E2

ρg , c(ρc, E) = ρcE
ρg

• Without bulk charges, c = 0, d = 1

boundary condition
2b
L = 2ξ

L cosh L
2ξ ≥ ξc = 1.5088...

lower bound for electric field in order to
enable length L: b > 1

2Lξc

• With bulk charges new solution c ≤
cm(ξ0, b)
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Dynamical stability

• velocity of charged particles > velocity of dragged water molecules (mean
mass velocity)
• total mass current > mass current from charge particles

σE

ρc
> u0

(

b

L
+ c

)

> xi
σE

ρc

with mass ratio of charged (e.g. NaCl) to water molecules
xi =

#imNaCl
#wmH20

= ρcmi
ρei

E = 0.64kV/cm

• lower and upper bond on L

Comparison with experiment

J. Woisetschlager, K. Gatterer, E. Fuchs, Exp. in Fluids 48, 121 (2010)
40mg/s, 1cm length, diameter of 2.5mm, necessary 12.5kV
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• Ohmic σ = λ ρc
eNA

+ σ0: 13 orders of magnitude higher bulk charges

necessary in order to get same range

Surface potential and reversed currents

ζ potential defined by velocity ~vi =
ei

6πηri
~E = σ

ρi
~E = −ǫǫ0

ζ
η
~E describes the

electric potential at the surface of the bridge
assume charge density ρc = ρb + ρr(r), and radial-dependent modulation
of bulk charge
Poisson equation for the electrostatic potential

∇2Ψ = −ρr(r)

ǫǫ0
= − 1

ǫǫ0

∑

i

niei

(

e−eiΨ/T − 1
)

≈ κ2Ψ

solved to obtain radial charge density and additional body force

~f (r) = ρr(r) ~E = −ǫǫ0κ
2ζ

I0(κr)

I0(κR)
~E

Extension of Navier Stokes integrated to yield velocity

v(r)−v(R)=
2J0
πR2

{

(κR)2
(

1− r2

R2

)

+4
ζ

ζ0

[

I0(κr)

I0(κR)
−1

]}

with

J0 =
πv0
2κ2

(

b

2L
+ c

)

ζ0 =

(

b

2L
+ c

)

ρg

ǫǫ0Eκ2
=

(ǫ− 1)E

2ǫκ2L
+

ρb
ǫǫ0κ2

Total volume flow relative to surface flow

J(R) = 2π

R
∫

0

[v(r)− v(R)] rdr = J0

[

(κR)2 − 8
ζ

ζ0

I2(κR)

I0(κR)

]

Results for reversed currents

• flow can change direction if ζ potential is exceeding ζ0
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Summary

1. electrohydrodynamics sufficient to describe water bridge formation

2. new exact solution of charged catenary: asymmetric profile

3. no bulk charges: maximal length no minimal length

4. bulk charges: also minimal length

5. very small concentrations of bulk charges (¿50 ng/l) destroys bridge

6. dynamical picture: dragged liquid particles due to motion of charges

• dynamical stability
• mass flow combines charge transport and neutral mass flow dragged
by dielectric pressure in agreement with the experimental data

7. theory applies for charged liquids with small Reynolds numbers (laminar)

8. motivated by recent visualizations of bidirectional flow, additional spatial
modulation of radial charge distribution considered

9. surface potential by solving Poisson equation and from Navier-Stokes
equation a modified mass flow through the bridge

10. parameter range found where flow is changing its direction


