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Problem with paradigma of anomalous functions

Questions:

1. Why appears only one and not two condensates of cooper pairs?

2. Stability limited by pair excitation into bound pairs or pair breaking?

Paradigma:

Cooper pairs need anomalous functions < a+a+ > 6= 0, cannot conserve
density (does not matter)

Our view:

• Anomalous functions are short cut to right results (mean field), but same
result possible without non-conserving assumptions

• Need unified theory above and below condensation temperature

• Fluctuations and condensation at the same theoretical footing to access
stability

Solution:

• T-matrix with multiple scattering corrections (MSC)

• critical velocity of pair excitation
√
3-times larger than critical velocity

of pair breaking

Scattering T-matrix

Many-body T-matrix

Scattered wave
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TΨ0

Dichotomy between gap and selfconsistency

Galitzkii-Feynman
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Near pole (pairing, bound states) T-matrix is separable T = △△
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no pole no gap equation
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two-pole structure, BCS gap equation

• Selfconsistency needed for physical distributions, Goldstone theorem,
conservation laws

• Only partial selfconsistency lead to the superconducting gap

• This conflict is known as selfconsistency gap dichotomy:

– theories satisfying selfconsistency required by Goldstones criterion
yield zero gap

– theories giving the gap do not satisfy selfconsistency

Removal of double counts

Paradox: The worse approximation yields better result
Wrong conclusion: Superconductor and normal metal not be covered by
unified theory
Solution: Galitskii-Feynman approximation includes double-counts fatal in
superconducting state
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• Third particle ought to be different from the interacting pair: p 6= q !
• Each momentum contributes as 1/volume → vanishs for infinite volume
• Normal state ok, but pairing or BE condensates state q ∼ volume

1. Asymmetric selfconsistency is necessary to get gap equation

2. Asymmetry violates Kadanoff/Baym criterion B → no particle conserva-
tion ?

3. Derivation from cummulant expansion (cluster-cluster diagrams)
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Procedure
subtract own interaction in singular channel
Using the Dyson equation G−1

0 = G−1 + Σ
one obtains

G\i = G−G\iΣiG
G\i = G0+G0(Σ−Σi)G\i

closing with the subtracted propagator Σi = TiḠ\i , short exercise

G−1 = G−1
0 − Σ = G−1

0 − Σ′ − Σi

= G−1
0 − Σ′ − TiḠ\i = G−1

0 − Σ′ − Ti

(

Ḡ−1
0 − Σ̄′)−1

or explicitly

G =
Ḡ−1

0 − Σ̄′

[G−1
0 − Σ′][Ḡ−1

0 − Σ̄′]− Ti

free propagator
“proper” selfenergy
“anomalous” selfenergy

G−1
0 = ω − ǫp

Σ11(p) ≡ Σ′(p)
Σ12(p) ≡ ∆(p)

in matrix form G = G0 +G0ΣG with

G =

(

G11 G12

Ḡ12 Ḡ11

)

, G0 =

(

G0 0
0 Ḡ0

)

, Σ =

(

Σ11 Σ12

Σ̄12 ±Σ̄11

)

Bosons S. T. Beliaev, Soviet. Phys. JETP 7 (1958) 289
Fermions L. P. Gorkov, Soviet. Phys. JETP 7 (1958) 505

“normal” G11 ≡ G and “anomalous” Green’ function

G12 ≡
−Σ12

(ω + ǫ + Σ̄11)(ω − ǫ− Σ11) + Σ2
12

results, not needed as starting (conservation laws completed)
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Energy of condensate as poles of the MSC T-matrix

excited bound states (Q-mode), at zero frequency Cooper pairs (C-mode),

singular element T0,C = L3

kBT
∆̄∆, T-matrix of the condensation mode

T0,C = V − V kBT
L3

∑

kG↑(ω,k)G 6C↓(−ω,C−k)T0,C

near Tc T-matrix diverges, expand (GL equation Gorkov)

~
2|C|2
2m∗ ∆̄ + α∆̄ + β|∆|2∆̄ = 0

T-matrix 1
T0,Q = 1

V + kBT
L3

∑

kG↑(ω,k)G↓(−ω,Q−k) for non-condensed

pairs both propagators depend on gap, leads to energy

χ

T0,Q
=

|Q|2
2m∗ + α + 2β|∆|2

in condensation mode

χ

T0,C
=

|C|2
2m∗ + α + β|∆|2 = 0

identical to GL approximation, eliminate gap χ
T0,Q = |Q|2

2m∗ − α − |C|2
m∗ , zero

only if |C|2 compensate −α

• T-matrix in the Q-mode remains finite, cannot become singular once the
condensation develops in C-mode
• therefore parallel condensation in two competitive modes is excluded
• only a single condensate as tacitly assumed in BCS theory

Critical current
pair momentum C are limited by the critical current, |C|2 < Q2

c, current
j ∝ C|∆|2 ∝ C

(

−α− |C|2/2m∗)

critical current as the maximum of j, Q2
c = 2m∗|α|/3, accordingly,

χ
T0,Q > |Q|2

2m∗ − α− Q2
c

m∗ =
|Q|2
2m∗ − α

3
> 0

Comparison to Galitsky/Feynman + Kadanoff/Martin

∆̄ = −V kBT
L3

∑

kG↑(ω,k)G 6C↓(−ω,C−k)∆̄

Galitsky-Feynman G 6C↓ ≈ G↓

χ

T0,C
=

|C|2
2m∗Gal

+ αGal + 2βGal|∆|2 χ

T0,Q
=

|Q|2
2m∗Gal

+ αGal + 2βGal|∆|2

eleminating gap χ
T0,Q = |Q|2

2m∗Gal − |C|2
2m∗Gal

• if persistent current, C 6= 0, dispersion supports nucleation of second
condensate at energy minimum Q = 0

Kadanoff-Martin G 6C↓ ≈ G0

χ

T0,C
=

|C|2
2m∗KM

+ αKM + βKM|∆|2 χ

T0,Q
=

|Q|2
2m∗KM

+ αKM + βKM|∆|2

eleminating gap χ
T0,Q = |Q|2

2m∗KM − |C|2
2m∗KM

• like Feynman Galitsky nucleation of second condensate at energy
minimum Q = 0 possible

Compare MSC T-matrix

χ

T0,Q
=

|Q|2
2m∗ + α + 2β|∆|2, χ

T0,C
=

|C|2
2m∗ + α + β|∆|2 = 0

eliminate gap χ
T0,Q = |Q|2

2m∗ − α− |C|2
m∗

• therefore parallel condensation in two competitive modes is excluded

Excitation of Cooper pairs from the condensate

N particles (Cooper pairs) in running frame v excite quasiparticle (bound
pair) ǫQ, possible if (Cherenkov) Ei − Ef = v ·Q− (ǫQ − ǫ0) > 0, i.e.

(v ·Q) ≥ χ
T0,Q = |Q|2

2m∗ − α− |C|2
m∗

∣

∣

∣

C=0
= |Q|2

2m∗ − α solved by real Q only if

|v| > vpe =

√

2|α|
m∗

since pair breaking velocity vpb =
∆
kF

=
√

|α|
βkF

=
√

|α|
3m we have the relation

vpe =
√
3vpb.

• critical velocity of pair breaking lower than critical velocity of pair excita-
tion
→ stability of condensate controlled by pair breaking

• Feynman-Galitsky and Kadanoff-Martin: (v · Q) ≥ |Q|2
2m∗ fails to justify

superconductivity

(zero critical velocity from Landau criterion)

Summary

• The Galitskii-Feynman T-matrix approximation fails for superconducting
state because of non-physical repeated collisions

• Separating singular channel from selfenergy avoiding repeated collisions
leads to propagators of Beliaev form for Bosons or Nambu-Gorkov form
for Fermions (Anomalous Green’s function is consequence of theory not
assumed ad-hoc)

•MSC -Tmatrix theory of pairing and condensation is valid above and be-
low critical temperature: consistent description of pair-breaking effects

•MSC T-matrix justifies two basic assumptions of BCS theory: conden-
sate single-valued, excitations of bound electron pairs can be neglected
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critical velocities of
pair breaking pair excitation

Galitskii 0 0
KM ∆/kF 0

TMSC ∆/kF
√
3∆/kF

• Factor of two in non-linear term: non-condensed pairs feel gap due
to condensate twice stronger than by Cooper pairs in condensate (like
bosons out of BEC twice stronger)

• Our analyses restricted to conventional superconductors of type I and
not to recent multi-gapped materials
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