Stability of condensates and supercurrents

Münster University of **Applied Sciences**

K. Morawetz^{1,2,3} and P. Lipavský⁴, M. Männel¹, B. Sopik⁴

¹ Münster University of Applied Sciences, Stegerwaldstrasse 39, 48565 Steinfurt, Germany ² International Institute of Physics (IIP), Av. Odilon Gomes de Lima 1722, 59078-400 Natal, Brazil ³ Max-Planck-Institute for the Physics of Complex Systems, 01187 Dresden, Germany ⁴Faculty of Mathematics and Physics, Charles University, Ke Karlovu 3, 12116 Prague 2, Czech Republic

Problem with paradigma of anomalous functions

Questions:

- 1. Why appears only one and not two condensates of cooper pairs?
- 2. Stability limited by pair excitation into bound pairs or pair breaking?

Paradigma:

Cooper pairs need anomalous functions $< a^+a^+ > \neq 0$, cannot conserve density (does not matter)

Removal of double counts

Paradox: The worse approximation yields better result Wrong conclusion: Superconductor and normal metal not be covered by unified theory

Solution: Galitskii-Feynman approximation includes double-counts fatal in superconducting state

Comparison to Galitsky/Feynman + Kadanoff/Martin

$$\bar{\Delta} = -V \frac{k_{\rm B}T}{L^3} \sum_k G_{\uparrow}(\omega, \mathbf{k}) G_{\mathbf{C}\downarrow}(-\omega, \mathbf{C} - \mathbf{k}) \bar{\Delta}$$

Galitsky-Feynman $G_{\mathbf{C}\downarrow} \approx G_{\downarrow}$

$$\frac{\chi}{\mathcal{T}_{0,\mathbf{C}}} = \frac{|\mathbf{C}|^2}{2m^{*\mathrm{Gal}}} + \alpha^{\mathrm{Gal}} + 2\beta^{\mathrm{Gal}}|\Delta|^2 \qquad \frac{\chi}{\mathcal{T}_{0,\mathbf{Q}}} = \frac{|\mathbf{Q}|^2}{2m^{*\mathrm{Gal}}} + \alpha^{\mathrm{Gal}} + 2\beta^{\mathrm{Gal}}|\Delta|^2$$

eleminating gap $\frac{\chi}{\mathcal{T}_{0,\mathbf{Q}}} = \frac{|\mathbf{Q}|^2}{2m^{*\text{Gal}}} - \frac{|\mathbf{C}|^2}{2m^{*\text{Gal}}}$ • if persistent current, $\mathbf{C} \neq \mathbf{0}$, dispersion supports nucleation of second condensate at energy minimum $\mathbf{Q} = \mathbf{0}$

Our view:

- Anomalous functions are short cut to right results (mean field), but same result possible without non-conserving assumptions
- Need unified theory above and below condensation temperature
- Fluctuations and condensation at the same theoretical footing to access stability

Solution:

- T-matrix with multiple scattering corrections (MSC)
- critical velocity of pair excitation $\sqrt{3}$ -times larger than critical velocity of pair breaking

- Third particle ought to be different from the interacting pair: $p \neq q$! • Each momentum contributes as $1/volume \rightarrow vanishs$ for infinite volume • Normal state ok, but pairing or BE condensates state $q \sim$ volume
- 1. Asymmetric selfconsistency is necessary to get gap equation
- 2. Asymmetry violates Kadanoff/Baym criterion $B \rightarrow no$ particle conservation ?
- 3. Derivation from cummulant expansion (cluster-cluster diagrams) K. Morawetz J. Stat. Phys. 143 (2011) 482

Procedure

subtract own interaction in singular channel Using the Dyson equation $G_0^{-1} = G^{-1} + \Sigma$ one obtains

$$G_{i\lambda} = G - G_{i\lambda} \Sigma_i G$$
$$G_{i\lambda} = G_0 + G_0 (\Sigma - \Sigma_i) G_{i\lambda}$$

closing with the subtracted propagator $\Sigma_i = T_i ar{G}_{i\!\lambda}$, short exercise

$$G^{-1} = G_0^{-1} - \Sigma = G_0^{-1} - \Sigma' - \Sigma_i$$

= $G_0^{-1} - \Sigma' - T_i \bar{G}_i = G_0^{-1} - \Sigma' - T_i \left(\bar{G}_0^{-1} - \bar{\Sigma}' \right)^{-1}$

or explicitly

 $G = \frac{\bar{G}_0^{-1} - \bar{\Sigma}'}{[G_0^{-1} - \Sigma'][\bar{G}_0^{-1} - \bar{\Sigma}'] - T_i}$ free propagator $G_0^{-1} = \omega - \epsilon_p$ "proper" selfenergy $\Sigma_{11}(p) \equiv \Sigma'(p)$ "anomalous" selfenergy $\Sigma_{12}(p) \equiv \Delta(p)$

in matrix form $\mathbf{G}=\mathbf{G^0}+\mathbf{G^0}\mathbf{\Sigma}\mathbf{G}$ with

 $\mathbf{G} = \begin{pmatrix} G_{11} & G_{12} \\ \bar{G}_{12} & \bar{G}_{11} \end{pmatrix}, \ \mathbf{G}_{\mathbf{0}} = \begin{pmatrix} G_0 & 0 \\ 0 & \bar{G}_0 \end{pmatrix}, \ \mathbf{\Sigma} = \begin{pmatrix} \Sigma_{11} & \Sigma_{12} \\ \bar{\Sigma}_{12} & +\bar{\Sigma}_{11} \end{pmatrix}$

Bosons S. T. Beliaev, Soviet. Phys. JETP 7 (1958) 289 Fermions L. P. Gorkov, Soviet. Phys. JETP 7 (1958) 505

Kadanoff-Martin $G_{\mathcal{C}\downarrow} \approx G^0$

$$\frac{\chi}{\mathcal{T}_{0,\mathbf{C}}} = \frac{|\mathbf{C}|^2}{2m^{*\mathrm{KM}}} + \alpha^{\mathrm{KM}} + \beta^{\mathrm{KM}} |\Delta|^2 \qquad \frac{\chi}{\mathcal{T}_{0,\mathbf{Q}}} = \frac{|\mathbf{Q}|^2}{2m^{*\mathrm{KM}}} + \alpha^{\mathrm{KM}} + \beta^{\mathrm{KM}} |\Delta|^2$$

eleminating gap $\frac{\chi}{\mathcal{T}_{0,\mathbf{Q}}} = \frac{|\mathbf{Q}|^2}{2m^{*\mathrm{KM}}} - \frac{|\mathbf{C}|^2}{2m^{*\mathrm{KM}}}$ • like Feynman Galitsky nucleation of second condensate at energy minimum $\mathbf{Q} = \mathbf{0}$ possible

Compare MSC T-matrix

$$\frac{\chi}{\mathcal{T}_{0,\mathbf{Q}}} = \frac{|\mathbf{Q}|^2}{2m^*} + \alpha + 2\beta |\Delta|^2, \qquad \frac{\chi}{\mathcal{T}_{0,\mathbf{C}}} = \frac{|\mathbf{C}|^2}{2m^*} + \alpha + \beta |\Delta|^2 = 0$$

eliminate gap
$$\frac{\chi}{\mathcal{T}_{0,\mathbf{Q}}} = \frac{|\mathbf{Q}|^2}{2m^*} - \alpha - \frac{|\mathbf{C}|^2}{m^*}$$

• therefore parallel condensation in two competitive modes is excluded

Excitation of Cooper pairs from the condensate

N particles (Cooper pairs) in running frame v excite quasiparticle (bound pair) ϵ_Q , possible if (Cherenkov) $E_i - E_f = \mathbf{v} \cdot \mathbf{Q} - (\epsilon_Q - \epsilon_0) > 0$, i.e.

$$(\mathbf{v} \cdot \mathbf{Q}) \geq \frac{\chi}{\mathcal{T}_{0,\mathbf{Q}}} = \frac{|\mathbf{Q}|^2}{2m^*} - \alpha - \frac{|\mathbf{C}|^2}{m^*} \Big|_{C=0} = \frac{|\mathbf{Q}|^2}{2m^*} - \alpha \text{ solved by real } \mathbf{Q} \text{ only if }$$

$$|\mathbf{v}| > v_{\mathrm{pe}} = \sqrt{\frac{2|\alpha|}{m^*}}$$

since pair breaking velocity $v_{
m pb}=rac{\Delta}{k_{
m F}}=\sqrt{rac{|lpha|}{eta k_{
m F}}}=\sqrt{rac{|lpha|}{3m}}$ we have the relation

"normal" $G_{11} \equiv G$ and "anomalous" Green' function

$$G_{12} \equiv \frac{-\Sigma_{12}}{(\omega + \epsilon + \bar{\Sigma}_{11})(\omega - \epsilon - \Sigma_{11}) + \Sigma_1^2}$$

results, not needed as starting (conservation laws completed) P. Lipavsky, PRB 78 (2008) 214506; K. Morawetz, PRB 82 (2010) 092501

Energy of condensate as poles of the MSC T-matrix

excited bound states (Q-mode), at zero frequency Cooper pairs (C-mode), singular element $\mathcal{T}_{0,\mathbf{C}}~=~rac{L^3}{k_{\mathrm{B}}T}ar{\Delta}\Delta$, T-matrix of the condensation mode $\mathcal{T}_{0,\mathbf{C}} = V - V \frac{k_{\mathrm{B}}T}{L^3} \sum_{k} G_{\uparrow}(\omega, \mathbf{k}) G_{\mathcal{O}\downarrow}(-\omega, \mathbf{C} - \mathbf{k}) \mathcal{T}_{0,\mathbf{C}}$

near T_c T-matrix diverges, expand (GL equation Gorkov)

 $\frac{\hbar^2 |\mathbf{C}|^2}{2m^*} \bar{\Delta} + \alpha \bar{\Delta} + \beta |\Delta|^2 \bar{\Delta} = 0$

T-matrix $\frac{1}{\mathcal{T}_{0,\mathbf{Q}}} = \frac{1}{V} + \frac{k_{\mathrm{B}}T}{L^3} \sum_k G_{\uparrow}(\omega,\mathbf{k}) G_{\downarrow}(-\omega,\mathbf{Q}-\mathbf{k})$ for non-condensed pairs both propagators depend on gap, leads to energy

$$\frac{\chi}{\mathcal{T}_{0,\mathbf{Q}}} = \frac{|\mathbf{Q}|^2}{2m^*} + \alpha + \frac{2\beta}{|\Delta|^2}$$

in condensation mode

$$\frac{\chi}{\mathcal{T}_{0,\mathbf{C}}} = \frac{|\mathbf{C}|^2}{2m^*} + \alpha + \beta |\Delta|^2 = 0$$

identical to GL approximation, eliminate gap $\frac{\chi}{\mathcal{T}_0 \, \mathbf{\Omega}} = \frac{|\mathbf{Q}|^2}{2m^*} - lpha - \frac{|\mathbf{C}|^2}{m^*}$, zero only if $|\mathbf{C}|^2$ compensate $-\alpha$

 $v_{\rm pe} = \sqrt{3}v_{\rm pb}.$

• critical velocity of pair breaking lower than critical velocity of pair excitation \rightarrow stability of condensate controlled by pair breaking • Feynman-Galitsky and Kadanoff-Martin: $({f v}\cdot{f Q})\geq rac{|{f Q}|^2}{2m^*}$ fails to justify

superconductivity

(zero critical velocity from Landau criterion)

Summary

- The Galitskii-Feynman T-matrix approximation fails for superconducting state because of non-physical repeated collisions
- Separating singular channel from selfenergy avoiding repeated collisions leads to propagators of Beliaev form for Bosons or Nambu-Gorkov form for Fermions (Anomalous Green's function is consequence of theory not assumed ad-hoc)
- MSC -Tmatrix theory of pairing and condensation is valid above and below critical temperature: consistent description of pair-breaking effects
- MSC T-matrix justifies two basic assumptions of BCS theory: condensate single-valued, excitations of bound electron pairs can be neglected
- 1. Phys. Rev. B 78 (2008) 214506: Multiple scattering corrections to the T-matrix approximation: Unified theory of normal and superconducting states, P. Lipavský
- 2. Phys. Rev. 81 (2010) 092501: Equivalence of channel-corrected T-matrix and anoma*lous propagator approach*, K. Morawetz
- 3. J. Stat. Phys. 143 (2011) 482: Asymmetric Bethe-Salpeter equation for pairing and condensation, K. Morawetz

	critical velocities of	
	pair breaking	pair excitation
Galitskii	0	0
KM	$\Delta/k_{ m F}$	0
TMSC	$\Delta/k_{ m F}$	$\sqrt{3}\Delta/k_{ m F}$

- Selfconsistency needed for physical distributions, Goldstone theorem, conservation laws
- Only partial selfconsistency lead to the superconducting gap
- This conflict is known as selfconsistency gap dichotomy:
- theories satisfying selfconsistency required by Goldstones criterion yield zero gap
- theories giving the gap do not satisfy selfconsistency

ullet T-matrix in the Q-mode remains finite, cannot become singular once the condensation develops in C-mode

• therefore parallel condensation in two competitive modes is excluded • only a single condensate as tacitly assumed in BCS theory

Critical current

pair momentum C are limited by the critical current, $|\mathbf{C}|^2 < Q_c^2$, current $\mathbf{j} \propto \mathbf{C} |\Delta|^2 \propto \mathbf{C} \left(-lpha - |\mathbf{C}|^2/2m^*
ight)$ critical current as the maximum of **j**, $Q_c^2 = 2m^*|lpha|/3$, accordingly, $\frac{\chi}{\mathcal{T}_{0,\mathbf{Q}}} > \frac{|\mathbf{Q}|^2}{2m^*} - \alpha - \frac{Q_c^2}{m^*} = \frac{|\mathbf{Q}|^2}{2m^*} - \frac{\alpha}{3} > 0$

• Factor of two in non-linear term: non-condensed pairs feel gap due to condensate twice stronger than by Cooper pairs in condensate (like bosons out of BEC twice stronger)

• Our analyses restricted to conventional superconductors of type I and not to recent multi-gapped materials

4. Phys. Rev. B 84 (2012) 094529-1-13: Self-consistent T-matrix theory of superconductivity, B. Šopík, P. Lipavský, M. Männel, K. Morawetz, P. Matlock 5. Eur. Phys. J. B 87 (2014) 8: Stability of condensate in superconductors, P. Lipavský, K. Morawetz, B. Šopík, M. Männel