Current without bias in shuttling of nanoshafts

K. Morawetz ${ }^{1,2}$, S. Gemming ${ }^{1}$, R. Luschtinetz ${ }^{3}$,
L. M. Eng ${ }^{4}$, G. Seifert ${ }^{3}$, A. Kenfack ${ }^{5}$

${ }^{1}$ Forschungszentrum Rossendorf, PF 5101 19, 01314 Dresden, Germany
International Center for Condensed Matter Physics (ICCMP), 70904-910, Brasília-DF, Brazil ${ }^{3}$ Institute of Physical Chemistry and Electrochemistry, TU Dresden, 01062 Dresden, Germany ${ }^{4}$ Institute of Applied Photophysics, TU Dresden, 01062 Dresden, Germany
${ }^{5}$ Freie Universität Berlin, Fachbereich Biologie, Chemie, Pharmazie, Institut fr Chemie und Biochemie, Germany

Funding via the Deutsche Forschungsgemeinschaft (SPP 1155) and the DFG-BMBF Programme GEOTECHNOLOGIEN is gratefully acknowledged.

Tight binding model for HOMO, LUMO transport

Diode effect in shuttling transport

Model

- consider N nanoshafts of length L parallel oriented in y-direction perpendicular to substrate
- couple elastically by top ends and bend in \times direction applying tangential
force F force F

$$
x(z)=\frac{F z^{2}}{2 \mathcal{E} I}\left(L-\frac{z}{3}\right)=\frac{3}{2} x(L)\left(\frac{z}{L}\right)^{2}\left(1-\frac{z}{3 L}\right)
$$

where \mathcal{E} Young modulus and $I=\int z^{2} d A$ area moment of inertia

- maximal displacement on the top ends $z=L$ is $x \equiv x(l)=F L^{3} / \mathcal{E} I$ from which the spring constant $k=F / x=3 \mathcal{E} I / L^{3}$ is given - nanoshafts are located between two oppositely charged plates - each nanoshaft can carry $q_{i}<0$ describing charge in LUMO or $q_{i}>0$ for transport of holes in HOMO or none which can be exposed to time dependent external field $E(t)$
- coupled linear chain of top ends obeying
$\frac{d^{2} x_{i}(t)}{d t^{2}}=\omega^{2}\left[x_{i-1}(t)-2 x_{i}(t)+x_{i+1}(t)\right]+a_{i}(t)$
with the force per mass $\omega^{2}=3 \mathcal{E} I / m L^{3}$ and accelleration due to external bias $a_{i}(t)=q_{i} E(t) / m$
t time in units of $1 / \omega$ furthe
- analytical solution in terms of normalized orthogonal system $\phi_{n \nu}=\sqrt{2 /(N+1)} \sin [n \nu \pi /(N+1)]$,
$x_{i}(t)=\sum_{n=1}^{N} \phi_{n i}\left[\left(c_{n} \cos \omega_{n} t+d_{n} \sin \omega_{n} t\right)+\int_{0}^{t} d t^{\sin \omega_{n}\left(t-t^{\prime}\right)} \sum_{m=1}^{N} a_{m}\left(t^{\prime}\right) \phi_{n m}\right]$ with eigenfrequencies $\omega_{n}^{2}=2(1-\cos [n \pi /(N+1)])$
- when two top ends touch each other, charge is moved if one of both tubes had no charge, in case of opposite charges they annihilate counted as recombination which gives rise to light emission
- when such event happens, time evolution according to analytical solution restarts with new initial conditions and new charge distribution, in this way speed of analytical solution together with nonlinear process of recharging

Summary

Chain of perpendicularly arranged coupled and chargeable nanoshafts show a shuttling transport of charges

- A finite current is established already without external bias only due to the initial asymmetric deformation of the nanoshafts
- For transport between thiophene molecules, besides the hopping also shuttling transport channel is of importance
- Hopping transport in organic FET conveniently described by surface Greenfunctions (see Poster SYOP 4.26)
- Thermoelectric properties possible to design by geometry, barrier height, hopping parameter and temperature regime
- Nonlinear voltage bias leads to large resonances in figure of merit at special temperatures

Thanks to collaboration (2 recent papers):

- New J. Phys. 10 (2008) 103014-1-8: Current without bias and diode effect in shuttling transport of nanoshafts, K. Morawetz ,S. Gemming, R. Luschtinetz, L. M. Eng, G. Seifert, A. Kenfack
- Phys. Rev. B 79 (2009) 085405-1-12: Transport and noise in organic field effect devices, K. Morawetz, S. Gemming, R. Luschtinetz, T. Kunze, P. Lipavský, L. M. Eng, G. Seifert, P. Milde

