Formation of brine channels in sea ice

Fachhochschule **Münster** University of **Applied Sciences** ALFRED-WEGENER-INSTITUT HELMHOLTZ-ZENTRUM FÜR POLAR

¹Münster University of Applied Sciences, Stegerwaldstrasse 39, 48565 Steinfurt, Germany ² International Institute of Physics (IIP), Av. Odilon Gomes de Lima 1722, 59078-400 Natal, Brazil ³ Max-Planck-Institute for the Physics of Complex Systems, 01187 Dresden, Germany ⁴Alfred Wegener Institut für Polar- und Meeresforschung, Am Handelshafen 12, 27570 Bremerhaven, Germany

AX-PLANCK-GESELLSCHAFT

Different ice textures as habitat for micro-organisms Col.-granular Columnar

Weissenberger, Ber. Polarforsch. 111 (1992) Diatoms in brine pockets <u>bacteria</u>

Supercooling/heating only by α_1 , α_3

• $\alpha_1 > 1/4\alpha_3$, minimum at 0: disordered state • $\alpha_1 \leq \frac{1}{4\alpha_2} = \alpha_1(T_1)$ second minimum, coexistence curve, borderline represents super-heating • $\alpha_1(T_c) = \frac{2}{9\alpha_3} < \alpha_1(T) < \frac{1}{4\alpha_3}$ ordered phase metastable, (ice formation possible) • $\alpha_1 \leq \alpha_1(T_c)$ ordered phase stable, jump at T_c latent heat, first-order phase transition • super-cooling T_c^0 , freezing-point T_c , superheating

 $T_1 = \frac{9}{8}T_c - \frac{1}{8}T_c^0$ • homogeneous nucleation at super-heating >

Comparison	with	experiment:	2.	percolation threshold

histogram of cor 800	nected clusters	3500
600 filling = 23% 400	1000 800 600 400	2500 2000 1500 1000
0	200	- 0
1400 1200 1000 800 600 400 200 0	5000 4000 3000 2000 1000 0 5000 filling = 44%	7000 6000 5000 4000 3000 2000 1000

above: along brine layers and below: across with temperatures from $-18, -8, -4^{\circ}C$

• carbon consumption of organisms in brine channels: 18% in southern ocean

Dieckmann

Linear stability analysis

linear stability analysis $ar
ho=ar
ho_0 e^{\lambda(\kappa) au+i\kappa\xi}$ around the disordered and ordered

 $\lambda(\kappa) > 0$ allows fluctuation with wave-vector κ to grow exponentially in

 $\alpha'_1 = 0.1$, and D = 0.5 and $\alpha_3 = 0.9$ (left) compared to $\alpha_3 = 1$ (right)

Comparison with experiment: 3. structure size

• fastest-growing wave-vector $\kappa_c(D, \alpha_1, \alpha_3)$ sets structure by $2\pi/\kappa_c$ • critical domain size as function of freezing point depression $\lambda_c = \frac{2\pi}{k_c} = \frac{2\pi}{\kappa_c} \frac{h}{a_2} = \frac{2\pi}{\kappa_c} \sqrt{\frac{D_{salt}\rho_0}{\tilde{a}_1 |\Delta T|}}$

1. Pure sea ice:

• our choice $\alpha_3 = 0.9, \alpha_1 = 0.2$ (super-cooling $\Delta T_{sup} = 6.3$ K) and $D = D_{ice}/D_{salt} = 0.5$: dimensionless pattern size of 13.81 • rate of re-orientations of H_2O -molecules determines $\tilde{a}_1 = 1250K^{-1}s^{-1}$

• we obtain critical domain size $\lambda_c = 0.8 \mu m$ in agreement with sea ice platelet spacing $\lambda_{max} pprox 1 \mu$ m from morphological stability analysis (Weissenberger, Prible, Golden)

2. Size for natural conditions

• by upper limit of the instability region $\alpha_3 = 1.99$ and freezing parameter $\alpha_1 = 0.111482$, realistic description of seawater at 0.032K super-cooling and a lower limit of the super-cooling region of fresh water at -18.78° C

• we obtain dimensionless structure size $2\pi/\kappa_c = 4975.25$ and critical domain size $\lambda_c = 198 \mu m$ in agreement with observed values $3 - 1000 \mu m$ average 200μ m

Summary

• model for brine channel formation with two coupled order parameters,

• region of instabilities determined exclusively by freezing parameter and

specific heat or structure parameter not by diffusivity (Touring model)

• parameters describe thermodynamical properties of water like super-

• time-dependent evolution solved and brine channel texture in agreement

• physical justification of parameters by other properties of water leads

• Outlook: New dynamical mechanism of antifreeze proteins (new project)

to a better description of brine channel texture by mass conservation:

heating, super-cooling, freezing temperature and latent specific heat

tetrahedricity and salinity preserving mass conservation

• linear stability analysis provides phase diagram (two parameters)

56 (1984) 315

phase

time

model

time-oscillating structures would appear only if $\text{Im}\lambda(\kappa) \neq 0$, never in our

• structure parameters α_1 determines brine channel formation:

• small α_1 means low temperatures or low salinities and consequently freezing process • uniform ice phase for sufficiently large α_3 and a precipitate of salt at higher α_1 higher temperatures or higher salinities inducing a melting with uniform liquid water phase and dissolved salt • spatial structures can only appear in the

instability region (maximal point $\alpha_1 = 1/9$ at $\alpha_3 = 2$)

1,4 = 1,2 =1 0,8 0,6 ⇒ 0,4 0,2

Time evolution

$\begin{array}{c} 0 \\ 0 \\ -0,2 \\ -0,4 \\ -0,6 \\ -0,8 \\ \hline & -60 \\ -60 \\ -40 \\ -20 \\ 0 \\ -20 \\ 40 \\ 60 \\ \hline & -60 \\ -20 \\ -$ 1D (left) and 2D (right) vs. spatial coordinates $\tau = 10, 150, 500$ (from above) -60 -40 -20 0 20 40 (b) with $\alpha_3 = 0.9$, $\alpha_1 = 0.2$, $D = \frac{D_{\text{salt}}}{D_{\text{ice}}} \approx 0.5$ by D_{salt} at $T_c^0 = -1.9^o \text{C}$ [S. Maus 2007] -60 -40 -20 0 20 40 60 and $D_{\rm ice}$ by reorientation rate H_2O [A. Bogdan 1997] and correlation length [D. Eisenberg and W. Kauzmann 2002] -60 -40 -20 0 20 40 6

Minimal microscopic model

1. Molecular structure of water and ice by "tetrahedricity'

 l_i lengths of six edges by four nearest neighbors

ice: ideal tetrahedron $M_T = 0$ water: random structure $M_T = 1$

2. Salinity v

free energy density

 a_1 ... freezing parameter (phase transition) $a_3...$ structure parameter (nonlinear) $\frac{D_{\text{ice}}}{2}(\nabla u)^2 + \frac{a_1}{2}u^2 - \frac{a_2}{3}u^3 + \frac{a_3}{4}u^4 a_2 \dots \text{ first-order phase transition}$ h... ice-water coupling (reaction rate) $D_{\rm ice}$, $D_{\rm salt}$ diffusion coefficients of ice and salt

phase diagram where spatial structures can occur (checked)

0.2 α₁

• current generalized force $\vec{j} \sim \vec{F}$ by potential $\vec{F} = -\nabla P$ • potential in turn by free energy density $P = \delta f / \delta v$ dimensionless time $au = D_{
m salt} a_2^2 t/h^2$, space $\xi = a_2 x/h$, order parameter $\psi = h^2 u / D_{
m salt} a_2$, and salinity $ho = h^3 v / D_{
m salt} a_2^2$ $\frac{\partial \psi}{\partial \tau} = -\alpha_1' \psi + \psi^2 - \alpha_3 \psi^3 - \psi \rho + D \frac{\partial^2 \psi}{\partial \xi^2}, \qquad \frac{\partial \rho}{\partial \tau} = \frac{1}{2} \frac{\partial^2 \psi^2}{\partial \xi^2} + \frac{\partial^2 \rho}{\partial \xi^2}.$ time-dependent Ginzburg-Landau equations couple 2 order parameters by 3constants: 1. freezing parameter $lpha_1' = a_1 h^2 / a_2^2 D_{
m salt}$ 2. structure parameter $\alpha_3 = \frac{a_3 D_{\text{salt}}}{h^2}$ 3. diffusivity $D = \frac{D_{\text{ice}}}{D_{\text{colt}}}$ with $\alpha_1, \alpha_3, D > 0$

Time evolution of Cahn-Hilliard-type

• conservation of salt mass, demand balance equation $\partial v/\partial t = -\nabla \vec{j}$

Comparison with experiment: 1. morphology

(a) Imaging brine pore space with X-ray computed tomography D. J. Pringle et al. J. Geophys. Res. Oceans 114 (2009) C12017 upper images: along brine layers, bottom: across

(b) Scanning electron

microscopy image of cast

of brine channels Weis-

(d) phase field structure

with salinity conserva-

(c) long-time Turing

senberger

tion

simultaneously

with the experimental values

internal consistency of the model

supported by grant MO 621/22

Thermodynamics

uniform stationary free energy density $f(\Psi_0, \rho_0) = \frac{\alpha_1}{2}\psi_0^2 - \frac{1}{3}\psi_0^3 + \frac{\alpha_3}{4}\psi_0^4$ • Freezing-point depression since $\alpha_1(T) = \alpha'_1(T) + \rho_0$ (higher temperature than α'_1)

• at $T_c^0 = 233.15K$ vanishes $\alpha_1(T) = \tilde{\alpha}_1(T - T_c^0)$

• freezing point depression $\Delta T = -\frac{\rho_0}{\tilde{\alpha}_1}$ \rightarrow latent heat of water-ice phase transition $\Delta H = 6kJ/mol$ and a dissociation ratio of $x = (n_{Na^+} + n_{Cl^-})/n_{H_2O} = 1/50$, Clausius-Clapeyron: $\Delta T = -xRT^2/\Delta H = -2K$ \rightarrow specific heat $c = -T_c^0 \frac{\partial^2 f(\psi_0^+(T))}{\partial T^2} = \frac{8}{81} \frac{T_c^0}{\alpha_2^3 (T_c - T_c^0)^2}$

energy scale difference of latent heat of water freezing K_E = $L(0^{\circ}C) - L(-40^{\circ}C) = 98J/g$, our theory: $c_{spec} = K_E c = 2.14J/gK$

 $\rightarrow \alpha_3 = 0.9$