Formation of brine channels in sea ice
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1. Molecular structure of water and ice
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(a) Imaging brine pore
space with X-ray com-
puted tomography

D. J. Pringle et al. J.
Geophys. Res. Oceans
114 (2009) C12017
upper images: along
brine layers, bottom:
across

(b) Scanning electron
microscopy image of cast
of brine channels Weis-
senberger

(c) long-time Turing

(d) phase field structure
with salinity conserva-
tion

uniform stationary free energy density f(Wg, py) = %Zﬁg — %108 + %wé

e Freezing-point depression since a1 (T) = o (T') + po (higher temperature
than o))
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o at T = 233.15K vanishes o (T) = (T — TV)

e freezing point depression AT = —£0

— latent heat of water-ice phase transition AH — 6kJ/mol and a dis-
sociation ratio of © = (ny.+ + ne-)/nmo = 1/50, Clausius-Clapeyron:
AT = —zRT?/AH = —2K

oW (1) s 1

¢ ar? Blai(T.—TY)?

— specific heat ¢ =

energy scale difference of latent heat of water freezing Kp =
L(0°C) — L(—40°C) = 98.J /g, our theory: cgpee = Kpc = 2.14J/gK

— a3 = 0.9



