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Formation of Bloch and Plasma Oscillations
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carriers at time % tp later

A. Leitenstorfer, Nature 426(2003)23, R. Huber et al. Nature 414(2001)286

Time and frequency—dependent dynamical
response
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;‘ Quantum kinetic equations:
Gartner et al. PRB 66(2002) 075205

Vu and Haug PRB62 (2000) 7179

Kira and Koch PRL 93 (2004) 076402
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‘ Solution of meanfield equationl

t

. Linearize kinetic equation to obtain den- Sn(q. 1) = /dt’x(t, t/)vqext<t/)
sity response
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e one-particle reduced density matrix p obeys
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e local equilibrium density matrix p"“ deviates by chemical potential linked
to dn(q,t) by density conservation
e linearization leads to
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X(t,t’):H(t,t’)+/d£ [H(t,f)%qfr](t,f) x (¢, 1)

e large-time limit ¢t +t' — oo approaches familiar form y = —
=

Mermin-Das polarization (Mermin PRB 1 (1970) 2362)

Solution of transient time response by one-sided Fourier transform
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e limit of long wave lengths ¢ — 0
2n(t) 't t—t

appreciable simplification I1(¢,¢') ~ 22 (t — t)e = and I(t,1') = le=

e integral equation into differential one with n(t) ~ nyO(t — ty)
e Analytic solution K. Morawetz, P. Lipavsky, M. Schreiber, Phys. Rev. B

72 (2005) 233203

Achievement:

long-time limit yields the Drude formula lim =1 — —
t—oo €

This limit is not so easy to achieve within short-time expansions, e.g. ap-
2
proximate result [ElSayed et al, PRB 49 (1994) 7337] gives 1 —— n
p
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‘ Comparison with experimentl
|_GaAs]

Resonance about 8 THz due to
optical phonons, adding intrin-
sic contribution of crystal lattice
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%TO — 8.8 THz, “’2%0 — 8.1 THz
lattice damping v =0.2 ps~!
and background polarizability of
lon lattice e, = 11.0

Huber et al, phys.stat.sol.(b)
234 (2002) 207

pumb pulse at t; = —40fs,
probe pulse full-width at half-
maximum 27fs, plasma fre-
quency w, =14.4 THz, relax-
ation time 7 = 85 fs

Improvement by realistic shape

e too fast build-up of the col-

lective mode at the time ¢t = 25

fs

e just the time duration of the

experimental pulse

e we have approximated this by

e _ the instant jump

| zHZ] T W e more realistic smooth popu-
lating can be modeled by an

arctan-function and numerical

solution improves the descrip-

tion

‘Hybridization of plasma and Bloch oscillationsl

Electrons in periodic potential under electric field £ show Bloch [ Z. Phys.

52 (1928) 555 ] oscillations given by period of lattice d wp = <2, ex-

perimentally observed K. Leo, Semicond. Sci. Technol. 13 (1998) 249

First two time evolution steps comparing
an instant population of conduction band
with a smooth transition.

Question: How do Bloch oscillation and plasma oscillation influence each

other and how do they forme time-dependently
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Polarization: TI(z,t") = [%‘12 4+ 0(q4)]67—z7q(t —t)2

Mermin correction:I(t,¢') = [ + o(¢?)] =it (-t

with field and wave vector dependence
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plasma frequency: wg = 4me*n /T, maximal electron velocity: vy = h/md
If electrons in resonance with plasma frequency, ¢ v0 — hw,

Results
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16 effect reported in K. Morawetz,

J 12 A. P. Jauho, Phys. Rev. E 50
1. (1994) 474

0. Resonant waves compare with:

1) A. A. Ignatov, A. P. Jauho, J.
J08 Appl. Phys. 85 (1999) 3643,
{94 Y. A. Kosevich, Phys. Rev. B
-5 63 (2001) 205313
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Comparison with equilibrium

Response function for large
] times compared with the Drude
—— response and Ignatov/Jauho
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If no mean-fields ? — Levinson equationl

Time diagonal part of Kadanoff/Baym equation Ap = kQJFPZ_(k;;rBQ_(W)Z
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time-dependent Fermi's Golden Rule and memory effects

Properties:

e density conservation 2n = (0 ® momentum conservation 2 (p;) = 0
y ot ot \P1
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e Time variation of kinetic energy 5. ((5-) + (Vi2)) =0
Phys. Lett. A 199 (1995) 241 , Eur. Phys. J. A (1999) 291-305, Phys. Rev. C 64 (2001) 024613
The inclusion of memory effects produces the full energy conservation.
But, several effects hidden:

Off-shell tails in p, renormalization of scattering rates and wave function,
quasiparticle energies, collision delays: Ann. Phys. (NY) 294 (2001) 135

Better: neglect memory effects, only time-dependent Fermi's Golden Rule:
e.g. Maxwellian plasma [Phys. Lett. A 246 (1996) 311; Phys. Rev. E 63 (2001) 20102]

static Debye > =w,, /12 —ith:
Eeon(t) = —@—ngm (14 222)e” (1 — erf(z)) — \2/—%]
dynamical screening =, = w, /202 — it -
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Classical limit, [' = T
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Comparison with MD simulations

‘ Dense classical plasma by quantum approximationl

On a correspondence between classical and quantum particle systems,
Phys. Rev. E 66 (2002) 022103
Quantum-Born [Eur. Phys. J. A (1997) 291]:
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Bruckner parameter r, = %, by = 2%’; — /T'(487%)71/6 time in plasma

periods T Syt dest/h = (2)Y°m/°3°01 [\ /15

Simulation of dense
classical plasma

|G. Zwicknagel]

— Simulation =10
Quantum Born r, ~ r*

best fit (A ~ T'):

| Summaryl

e collisions have no time to happen yet (only mean-fields are formed)

e separate gross feature of the formation of collective modes at transient
times which are due to mean-field fluctuations

e simple analytic formula for time dependence of the dielectric function

e hybridization of plasma and Bloch oscillations, formed on same time
scale

But: relaxation time needed and what if no mean-fields (quasi-neutrality) ?

e Short time behavior by time-dependent Fermi's golden rule = Finite du-
ration approximation of non-Markovian collision integrals

-low temperature value is universal; ratio ~ h/ep (formation of quasi-
particles), high temperature limit ~ 1/w,

-analytical results for dynamical screening, static screening leads to 1/2
correlation energy

-good agreement with molecular dynamics

-strong coupling by equivalence: N classical particles <+ N — 1 quantum
particles




