Electron-electron biwire systems

Rajesh O. Sharma¹, Neil D. Drummond², Vinod Ashokan³ Kare N. Pathak¹, Klaus Morawetz^{4,5}

¹Department of Physics, Panjab University, 160014 Chandigarh, India ²Department of Physics, Lancaster University, Lancaster LA1 4YB, United Kingdom ³Department of Physics, Dr. B. R. Ambedkar National Institute of Technology, Jalandhar (Punjab) 144011, India ⁴Münster University of Applied Sciences, Stegerwaldstrasse 39, 48565 Steinfurt, Germany ⁵ International Institute of Physics- UFRN, Campus Universitário Lagoa nova, 59078-970 Natal, Brazil

Model

electron density n in each wire, coupling parameter $r_s = 1/(2na_{\rm B})$, Bohr radius $a_{\rm B} = \epsilon/(e^2 m_e)$, Hartree atomic units ($\hbar = |e| = m_e = \epsilon = 1$)

Momentum distribution

fitting n(k) within the range $|k - k_F| < \epsilon k_F$

$$n(k) = \frac{1}{2\pi} \left\langle \int \frac{\Psi_T(r)}{\Psi_T(x_1)} e^{ik(x_1 - r)} dr \right\rangle = n(k_F) + A[\operatorname{sign}(k - k_F)]|k - k_F|^{\alpha}$$

Luttinger parameter $K_{\rho} = 1 + 2\alpha - 2\sqrt{\alpha + \alpha^2}$

$$\hat{H} = -\frac{1}{2} \sum_{i=1}^{N} \left(\frac{\partial^2}{\partial \mathbf{x}_{i,1}^2} + \frac{\partial^2}{\partial \mathbf{x}_{i,2}^2} \right) + \sum_{i < j} \left\{ V(x_{ij,1}) + V(x_{ij,2}) \right\} + \sum_{i,j} \frac{1}{\sqrt{|\mathbf{x}_{i,1} - \mathbf{x}_{j,2}|^2 + d^2}} + NV_{\text{Machine}} + NV_{\text{Mac$$

where $x_{ij,m} = |x_{i,m} - x_{j,m}|$ distance between electron *i* located at $x_{i,m}$ and electron j located at $x_{j,m}$ in wire m, Ewald interaction $V(x_{ij,m})$ and Madelung energy $V_{
m Mad}$

Method

- variational Monte Carlo for Slater-Jastrow trial wave function $\Psi_T = D[\phi^{\uparrow}(x(\mathbf{R}))]D[\phi^{\downarrow}(x(\mathbf{R}))]e^{J(\mathbf{R})},$
- with orbital spin-up electron ϕ^{\uparrow} , Slater determinant D
- backflow transformation: oordinates of electrons in Slater determinants are replaced by "quasi-particle coordinates" related to actual electron positions by backflow functions consisting of polynomial expansions in electron in-wire separation up to 8th order
- CASINO's Jastrow factors N. D. Drummond, M. D. Towler, and R. J. Needs, Phys. Rev. B 70, 235119 (2004)
- non-reweighted variance minimization N. D. Drummond and R. J. Needs, Phys. Rev. B 72, 085124 (2005) to optimize free parameters of trial wave function, 5×10^6 statistically independent steps and 1024 configurations • comparison of variational MC and diffusive MC yields better than 99.9% agreement in ground state energy but less computationally costly

Correlational energy

interaction energy per electron $\Delta E = E_{
m g}^2 - E_{
m g}^1$ as difference between biwure and single wire

Symbols represents data for single wire • for $r_s = 5$ a small peak develops in g_{11} at $r = r_s$ when inter-wire distance is reduced to 0.6 a.u. rising with reduction in d

• at distance d = 0.4 a.u. g_{11} oscillates with period of r_s rather than with $r = 2r_s$

• similar to g_{11} , also g_{12} oscillates at period $r = r_s$ for $d \leq 0.4$ a.u. • at $r_s = 5$ for close proximity of two wires, we interpret change in period as tendency towards formation of Wigner crystal phase

• at $r_s = 10$ oscillations in both inter- and intra-wire PCFs are enhanced further, inter-wire correlations are comparatively stronger than intra-wire correlations as range of d is significantly smaller than r_s

• two kinds of osculations, period of r_s enveloped by second kind of oscillation due to interplay between intra- and inter-wire correlations

Static structure factor

Summary

- parallel infinitely-thin electron-electron quantum biwire system studied by variational Monte Carlo method
- interaction energy falls off as d^{-2} for high densities where d is comparable to r_s , for low densities $d \ll r_s$ smaller exponent
- pair correlation function shows oscillatory behavior with two frequencies • as wires approach, inter-wire correlations increase while intra-wire correlations decrease
- static structure factor shows a peak at $2k_F$ at higher densities, a second peak starts to appear at $4k_F$ when $r_s = 2$ and d = 0.2 a.u., which is not found for d > 0.2
- for lower densities, first peak completely disappears and the height of the second peak keeps increasing with r_s and d
- electron-electron biwire system goes into a quasi-Wigner crystalline state at densities higher compared to the case of a single wire
- momentum distribution reveals a Tomonaga-Luttinger (TL) liquid behavior with power law nature near k_F even in presence of an extra interwire interaction

books and paper: http://www.k-morawetz.de

1. Eur. Phys. J. B 91 (2018) 29, Dependence of structure factor and

ting, works for $1 < r_s < 20$ too • interaction energy $\Delta E(d)$ and correlation energy of single wire $E_c(d) = E_c^1 + C_c^2$ $\Delta E(d)$, therefore, dependence of correlation energy on wire separation d is similar to $\Delta E(d)$

Pair-correlation function

intra-wire (parallel-spin) m = 1, inter-wire (anti-parallel-spin) m = 2

• oscillations in g_{12} increases, in g_{11} decreases, as d decreases • correlations between electrons of different wires are build on and intrawire correlations are suppressed as two wires approach

• inter-wire SSF $S_{12}(k)$ negative for • $S_{12}(k)$ gets positive before $4k_F$ and a second peak builds up at $4k_F$ for d = 0.4 whose height increases as d

Sum over spin pairs

open circles: isolated single wire

• for high densities small peak at $2k_F$ whose height decreases as d becomes smaller (a), (b)

• lower density, correlation effects become more important (c), for $r_s = 2$

- correlation energy on the width of electron wires, Vinod Ashokan, Renu Bala, Klaus Morawetz, and Karem N. Pathak
- 2. Phys. Rev. B 97 (2018) 155147, Conditions where RPA becomes exact in the high-density limit, Klaus Morawetz, Vinod Ashokan, Renu Bala, and Karem N. Pathak
- 3. Phys. Rev. B 101 (2020) 075130, Exact ground-state properties of the one-dimensional electron gas at high density ,Vinod Ashokan, Renu Bala, Klaus Morawetz, and K. N. Pathak
- 4. Phys. Rev. B 104 (2021) 035149, Ground-state properties of electronelectron biwire systems, R. O. Sharma, N. D. Drummond, V. Ashokan, K. N. Pathak, K. Morawetz
- 5. Phys. Rev. B 105 (2022) 115140, Electron correlation and confinement effects in quasi-one-dimensional quantum wires at high density, A. Girdhar, V. Ashokan, N. D. Drummond, K. Morawetz, K. N. Pathak

- first peak in g_{11} and g_{12} near $r = 2r_s$ and $r = r_s$, both g_{11} and g_{12} oscillates with a period $2r_s$
- as d reduces, first peak of g_{12} rises and shifts towards origin while for g_{11} it shrinks and shifts away from origin
- $g_{12}(r)$ at r = 0 shifts towards zero as d reduces, because with decreasing
- d, electrons in different wires repel each other and $g_{12}(0)$ becomes smaller

a second peak appears at $4k_F$ when d is reduced to 0.2 a.u., no such peak in single isolated wire

- increasing r_s , the $4k_F$ peak rises while no $2k_F$ peak $d \ 1...0.1$
- at $r_s = 20$ the peak at $2k_F$ reappears (f)
- peak at $4k_F$ signals ordered structure, Wigner crystallization at much
- lower densities as compared to the single wire