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Problems with paradigma of anomalous functions

Questions:

1. Why appears only one and not two condensates of cooper pairs?

2. Stability limited by pair excitation into bound pairs or pair breaking?

3. BEC and pairing transition treated on same theoretical basis?

Our view:

• Anomalous functions are short cut to right results (mean field), but same
result possible without non-conserving assumptions

• Need unified theory above and below condensation temperature

• Fluctuations and condensation at same theoretical footing

Solution: T-matrix with multiple scattering corrections (MSC)

Many-body T-matrix

Scattered wave

Ψ′ =
1

E −H0 − V + i0
V Ψ0

reconstructed wave func-
tion

=
V

E −H0 + i0
V (Ψ0 + Ψ′)

T-matrix

=
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E −H0 + i0
TΨ0

Dichotomy between gap and selfconsistency

Galitzkii-Feynman
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Near pole (pairing, bound states) T-matrix is separable T = △△
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G−1(ω,k) = ω + ǫk −∆2G(−ω,−k)

no pole no gap equation
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∆2

ω + ǫ−k

two-pole structure, BCS gap equation

• satisfying selfconsistency required by Goldstones criterion yield no gap

• theories giving gap do not satisfy selfconsistency

Removal of double counts

Paradox: The worse approximation yields better result
Wrong conclusion: Superconductor and metals not covered by unified the-
ory
Solution: Galitskii-Feynman approximation includes double-counts
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• Third particle ought to be different from the interacting pair: p 6= q !
• Each momentum contributes as 1/volume → vanishs for infinite volume
• Normal state ok, but pairing or BE condensates state q ∼ volume
• Derivation of asymmetric Bethe-Salpeter equation (cluster-cluster dia-
grams) K. Morawetz J. Stat. Phys. 143 (2011) 482
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Subtraction of double counts
subtract own interaction in singular channel
Using the Dyson equation G−1

0 = G−1 + Σ

G\i = G−G\iΣiG
G\i = G0+G0(Σ−Σi)G\i

closing with the subtracted propagator Σi = TiḠ\i , short exercise

G−1 = G−1
0 − Σ = G−1

0 − Σ′ − Σi

= G−1
0 − Σ′ − TiḠ\i = G−1

0 − Σ′ − Ti

(

Ḡ−1
0 − Σ̄′)−1

or explicitly

G =
Ḡ−1

0 − Σ̄′

[G−1
0 − Σ′][Ḡ−1

0 − Σ̄′]− Ti

free propagator
“proper” selfenergy
“anomalous” selfenergy

G−1
0 = ω − ǫp

Σ11(p) ≡ Σ′(p)
Σ12(p) ≡ ∆(p)

in matrix form G = G0 +G0ΣG with

G =

(

G11 G12

Ḡ12 Ḡ11

)

, G0 =

(

G0 0
0 Ḡ0

)

, Σ =

(

Σ11 Σ12

Σ̄12 ±Σ̄11

)

Bosons S. T. Beliaev, Soviet. Phys. JETP 7 (1958) 289
Fermions L. P. Gorkov, Soviet. Phys. JETP 7 (1958) 505

“normal” G11 ≡ G and “anomalous” Green’ function

G12 ≡
−Σ12

(ω + ǫ + Σ̄11)(ω − ǫ− Σ11) + Σ2
12

results, not needed as starting (conservation laws completed)

P. Lipavsky, PRB 78 (2008) 214506; K. Morawetz, PRB 82 (2010) 092501

Green function and particle density

• the dispersion has two branches ±Eq

G(q, izν) =
izν + ǫq

(izν)2 − E2
q

, Eq =
√

ǫ2q ∓∆2
0 (q), ǫq =

~
2q2

2m
− µ + Σreg

• total density

n = ∓ 1

βΩ

∑

p,ν

G(p, izν) = ± 1

Ω

∑

p

1

2

[

ǫp
Ep

(

1± 2fB/F(Ep)
)

− 1

]

• solve many-body T-matrix for separable interaction gp =
(

1 + p2

γ2

)−1

• pole of T-matrix yields binding energy ωq < 0 for pair,

• ω0 = 2µ (Thouless criterion), singular contribution condensation of
Cooper pairs (BCS) but also condensation of bound states

• nonsingular contributions collected in regular self-energy Σreg

Attractive Fermi gas
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Stability of BCS condensate

excited bound states (Q-mode), at zero frequency Cooper pairs (C-mode),

singular element T0,C = L3

kBT
∆̄∆, T-matrix of the condensation mode

T0,C = V − V kBT
L3

∑

kG↑(ω,k)G 6C↓(−ω,C−k)T0,C

near Tc T-matrix diverges, expand (GL equation Gorkov)

~
2|C|2
2m∗ ∆̄ + α∆̄ + β|∆|2∆̄ = 0

T-matrix 1
T0,Q = 1

V + kBT
L3

∑

kG↑(ω,k)G↓(−ω,Q−k) for non-condensed

pairs both propagators depend on gap, leads to energy

χ

T0,Q
=

|Q|2
2m∗ + α + 2β|∆|2

in condensation mode χ
T0,C = |C|2

2m∗ + α + β|∆|2 = 0 identical to GL

approximation, eliminate gap χ
T0,Q = |Q|2

2m∗ − α − |C|2
m∗ , zero only if |C|2

compensate −α

• T-matrix in the Q-mode remains finite, cannot become singular once the
condensation develops in C-mode
• factor of two in non-linear term: non-condensed pairs feel gap due to
condensate twice stronger than by Cooper pairs in condensate (like bosons
out of BEC twice stronger)
• therefore parallel condensation in two competitive modes is excluded (tac-
itly assumed in BCS theory)

Excitation of Cooper pairs from the condensate

N particles (Cooper pairs) in running frame v excite quasiparticle (bound
pair) ǫQ, possible if (Cherenkov) Ei − Ef = v ·Q− (ǫQ − ǫ0) > 0, i.e.

(v ·Q) ≥ χ
T0,Q = |Q|2

2m∗ − α − |C|2
m∗

∣

∣

∣

C=0
= |Q|2

2m∗ − α solved by real Q only if

|v| > vpe =
√

2|α|
m∗ since pair breaking velocity vpb = ∆

kF
=

√

|α|
βkF

=
√

|α|
3m

we have the relation

vpe =
√
3vpb

• critical velocity of pair breaking < critical velocity of pair excitation
→ stability of condensate controlled by pair breaking

• The Galitskii-Feynman T-matrix approximation fails for superconducting
state because of non-physical repeated collisions

•MSC -Tmatrix theory of pairing and condensation is valid above and be-
low critical temperature: consistent description of pair-breaking effects

•MSC T-matrix justifies two basic assumptions of BCS theory: conden-
sate single-valued, excitations of bound electron pairs can be neglected

critical velocities of
pair breaking pair excitation

Galitskii 0 0
KM ∆/kF 0

TMSC ∆/kF
√
3∆/kF

Approximations for Bose gases

The total energy in T-matrix approximation is

U =
∑

k 6=0

EkfB(Ek) +
∑

k 6=0

n20T 2(k)

4Ek
(1 + 2fB(Ek))

quasi particles two-particle contribution

−
∑

k 6=0

Ekv
2
k + T (0)

Ω

(

N 2 −NN0 +
1
2N

2
0

)

depletion attraction in momentum space

and the total number of particles is

N = N0 +
∑

k 6=0

fB(Ek) +
∑

k 6=0

v2k(1 + 2fB(Ek))

quasi particles depletion

I. Hartree-Fock
n = nid, µ = µid + 2nU0 for n0 = 0
n = n0 +∆n, µ = (2n− n0)U0 for n0 > 0

II. Bogoliubov
attraction in momentum space,
correlations, µ ≈ n0U0

Ek =
√

(~
2k2

2m + n0U0)2 − n2
0U

2
0

E =
∑

k EkfB(Ek) +
N0U0
2Ω (2N−N0)−

∑

k 6=0Ekv
2
k

a)

b) c)

III. Popov (Hartree-Fock-Bogoliubov): µ = (2n− n0)U0

Weak repulsive-interacting Bose gas
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Chemical potential with ideal critical
density nid ≈ 0.059γ3
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2γ2/2m,

λc0 = 8π~2/mγ

• Popov and Hartree-Fock approximation show unphysical behavior due to
overestimation of attraction in momentum space

• instability at onset of BEC and first-order phase-transition (Maxwell con-
struction)

• T-matrix approximation medium effects compensate repulsive interac-
tion near onset of BEC, attraction in momentum space compensated,
nevertheless first-order phase-transition

• in coexistence region condensate density changes linearly

Strong repulsive-interacting Bose gas
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Chemical potential, the vertical ar-
rows mark the density hysteresis
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Condensate density

• for strong repulsive interaction the attraction in momentum space is too
strong to be compensated by medium effects

• also T-matrix approximation yields multivalued region, which cannot be
avoided by the Maxwell construction

• therefore a true physical relevance is attributed to this behavior and it is
interpreted as appearance of a hysteresis


