Asymmetric Bethe-Salpeter equation - many phases of quantum gases

K. Morawetz ${ }^{1,2,3}$, M. Männel ${ }^{1}$, P. Lipavský ${ }^{4}$
Münster University of Applied Sciences, Stegerwaldstrasse 39, 48565 Steinfurt, Germany International Institute of Physics (IIP), Av. Odilon Gomes de Lima 1722, 59078-400 Natal, Brazil ${ }^{3}$ Max-Planck-Institute for the Physics of Complex Systems, 01187 Dresden, Germany ${ }^{4}$ Faculty of Mathematics and Physics, Charles University, Ke Karlovu 3, 12116 Prague 2, Czech Republic

Problems with paradigma of anomalous functions

Questions

1. Why appears only one and not wo condensates of cooper pais?
2. Stability limited by pair excitation into bound pais or pair breaking?
3. BEC and pairing transition treated on same theoretical basis?

Our view:

- Anomalous functions are short cut to right results (mean field), but same result possible without non-conserving assumptions
- Need unified theory above and below condensation temperature
- Fluctuations and condensation at same theoretical footing

Solution: T-matrix with nuttiple sattering corections (MSC)

Many-body T-matrix

$\begin{array}{ll}\text { Scattered wave } & \begin{array}{l}\text { reconstructed wave func- } \\ \text { tion }\end{array}\end{array} \quad$ T-matrix
$\Psi^{\prime}=\frac{1}{E-H_{0}-V+i 0} V^{V \Psi_{0}}=\frac{V}{E-H_{0}+i 0^{\prime}} V\left(\Psi_{0}+\Psi^{\prime}\right)^{\prime}=\frac{1}{E-H_{0}+i 0^{T}} T{ }^{T \Psi_{0}}$

Dichotomy between gap and selfconsistency
 Galitzki- Feymman

 Near pole (pairing, bound states) T-matrix is separable $T=\triangle \triangle$
 $\vec{k}=\frac{-}{k}+\underset{k}{\Delta_{-k}} \underset{k}{\Delta}=\underset{k}{-}+\underset{-k}{\Delta}$
 $G^{-1}(\omega, \mathbf{k})=\omega+\epsilon_{\mathbf{k}}-\Delta^{2} G(-\omega,-\mathbf{k}) \quad G^{-1}(\omega, \mathbf{k})=\omega+\epsilon_{\mathbf{k}}-\frac{\Delta^{2}}{\omega+\epsilon_{-\mathbf{k}}}$
 no pole no gap equation
 two-pole structure, BCS gap equation
 - satisfying selfconsistency required by Goldstones criterion yield no gap
 - theories giving gap do not satisfy selfconsistency

Removal of double counts

Paradox: The worse approximation yields better result
Wrong conclusion: Superconductor and metals not covered by unified the-
ory
Solution: Galitskii-Feynman approximation includes double-counts

- Third particle ought to be different from the interacting pair: $p \neq q$! - Each momentum contributes as 1 /volume \rightarrow vanishs for infinite volume - Normal state ok, but pairing or BE condensates state $q \sim$ volume - Derivation of asymmetric Bethe-Salpeter equation (cluster-Cluster diagrams) K. Morawetz J. Stat. Phys. 143 (2011) 482

1. Phys. Rev. B 78 (2008) 214506: Multiple scattering corrections to the T-matrix approximation: Unified theory of normal and superconducting states, P. Lipavsky
2. New J. Phys. 12 (2010) 033013: Multiple condensed phases in attractively interacting Bose systems, M. Männel, K. Morawetz, P. Lipavský
3. Phys. Rev. 82 (2010) 092501: Equivalence of channel-corrected T-matrix and anomalous propagator approach, K. Morawetz
4. J. Stat. Phys. 143 (2011) 482: Asymmetric Bethe-Salpeter equation for pairing and condensation, K. Morawetz
5. Phys. Rev. B 84 (2012) 094529: Self-consistent T-matrix theory of superconductivity, B. Šopik, P. Lipavský, M. Männel, K. Morawetz, P. Matlock
6. Phys. Rev. A 87 (2013) 053617: Coexistence of phase transitions and hysteresis near the onset of Bose-Einstein condensation, M. Männel, K. Morawetz, P. Lipavský,
7. Eur. Phys. J. B 87 (2014) 8: Stability of condensate in superconductors, P. Lipavský, K. Morawetz, B. Sopík, M. Männel

Subtraction of double counts

subtract own interaction in singular channel $\quad G_{\mathrm{A}}=G-G_{i} \sum_{i} G$ $\begin{array}{ll}\text { Using the Dyson equation } G_{0}^{-1}=G^{-1}+\Sigma & G_{\lambda_{i}}=G_{0}+G_{0}\left(\Sigma-\Sigma_{i}\right) G_{i}\end{array}$ closing with the subtracted propagator $\Sigma_{i}=T_{i} \bar{G}_{\lambda}$, short exercise
$G^{-1}=G_{0}^{-1}-\Sigma=G_{0}^{-1}-\Sigma^{\prime}-\Sigma_{i}$
$=G_{0}^{-1}-\Sigma^{\prime}-T_{i} \bar{G}_{i}=G_{0}^{-1}-\Sigma^{\prime}-T_{i}\left(\bar{G}_{0}^{-1}-\Sigma^{\prime}\right)^{-}$
or explicitly

in matrix form $\mathrm{G}=\mathrm{G}^{0}+\mathrm{G}^{0} \Sigma \mathrm{G}$ with
$\mathbf{G}=\left(\begin{array}{cc}G_{11} & G_{12} \\ \bar{G}_{12} & G_{11}\end{array}\right), \mathbf{G}_{0}=\left(\begin{array}{cc}G_{0} & 0 \\ 0 & G_{0}\end{array}\right), \Sigma=\left(\begin{array}{cc}\Sigma_{11} & \Sigma_{12} \\ \Sigma_{12} \pm & \Sigma \Sigma_{11}\end{array}\right)$
Bosons S. T. Beliaev, Soviet. Phys. JETP 7 (1958) 289
Fermions L. P. Gorkov, Soviet. Phys. JETP 7 (1958) 505
"normal" $G_{11} \equiv G$ and "anomalous" Green' function
$G_{12} \equiv \frac{-\Sigma_{12}}{\left(\omega+\epsilon+\Sigma_{11}\right)\left(\omega-\epsilon-\Sigma_{11}\right)+\Sigma_{12}^{2}}$
results, not needed as starting (conservation laws completed)
P. Lipavsky, PRB 78 (2008) 214506; K. Morawetz, PRB 82 (2010) 092501

Green function and particle density

- the dispersion has two branches $\pm E$
$G\left(q, i z_{\nu}\right)=\frac{i z_{\nu}+\epsilon_{q}}{\left(i z_{\nu}\right)^{2}-E_{q}^{2}}, \quad E_{q}=\sqrt{\epsilon_{q}^{2} \mp \Delta_{0}^{2}(q)}, \quad \epsilon_{q}=\frac{\hbar^{2} q^{2}}{2 m}-\mu+\Sigma^{\operatorname{reg}}$ - total density
$n=\mp \frac{1}{\beta \Omega} \sum_{p, \nu} G\left(p, i z_{\nu}\right)= \pm \frac{1}{\Omega} \sum_{p} \frac{1}{2}\left[\frac{\epsilon_{p}}{E_{p}}\left(1 \pm 2 f_{\mathrm{B} / \mathrm{F}}\left(E_{p}\right)\right)-1\right]$
- solve many-body T-matrix for separable interaction $g_{p}=\left(1+\frac{p^{2}}{\gamma^{2}}\right)^{-1}$
- pole of T-matrix yields binding energy $\omega_{q}<0$ for pair,
$\omega_{0}=2 \mu$ (Thouless criterion), singular contribution condensation Cooper pairs (BCS) but also condensation of bound states
- nonsingular contributions collected in regular self-energy $\Sigma^{\text {reg }}$

Stability of BCS condensate

excited bound states (Q -mode), at zero frequency Cooper pairs (C-mode) singular element $T_{\text {IC }}=\frac{L^{3}}{}{ }^{3} \Delta \Delta$. T-matrix of the condensation mode $\tau_{0, \mathrm{C}}=V-V \frac{k_{\mathrm{E}} T}{L^{5} T} \sum_{k} G_{\uparrow}(\omega, \mathbf{k}) G_{\mathbb{Q}_{l}(}(-\omega, \mathbf{C}-\mathbf{k}) \mathcal{T}_{0, \mathrm{C}}$
near T_{c} T-matrix diverges, expand (GL equation Gorkov)

$$
\frac{\hbar^{2}|\mathbf{C}|^{2}}{2 m^{*}}+\alpha \bar{\Delta}+\beta|\Delta|^{2} \bar{\Delta}=0
$$

T-matrix $\frac{1}{T_{0, Q}}=\frac{1}{V}+\frac{k_{\mathrm{k}} T}{L^{5} T} \sum_{k} G_{\uparrow}(\omega, \mathbf{k}) G_{\downarrow}(-\omega, \mathbf{Q}-\mathbf{k})$ for non-condensed pairs both propagators depend on gap, leads to energy

$$
\frac{\chi}{\tau_{0, Q}}=\frac{|\mathbf{Q}|^{2}}{2 m^{*}}+\alpha+2 \beta|\Delta|^{2}
$$

in condensation mode $\frac{x}{T_{\mathrm{TC}}}=\frac{|\mathrm{C}|^{2}}{2 m^{*}}+\alpha+\beta|\Delta|^{2}=0$ identical to GL approximation, eliminate gap $\frac{x}{T_{0, Q}}=\frac{\mid \mathrm{QQ}^{2}}{2 m^{*}}-\alpha-\frac{\mid \mathrm{CC}^{2}}{m^{*}}$, zero only if $|\mathrm{C}|^{2}$ compensate $-\alpha$

- T-matrix in the Q -mode remains finite, cannot become singular once the condensation develops in C -mode
- factor of two in non-linear term: non-condensed pairs feel gap due to condensate twice stronger than by Cooper pairs in condensate (like bosons out of BEC twice stronger)
- therefore parallel condensation in two competitive modes is excluded (tac itly assumed in BCS theory)

Excitation of Cooper pairs from the condensate
N particles (Cooper pairs) in running frame \mathbf{v} excite quasiparticle (bound pair) ϵ_{Q}, possible if (Cherenkov) $E_{i}-E_{f}=\mathbf{v} \cdot \mathbf{Q}-\left(\epsilon_{Q}-\epsilon_{0}\right)>0$, i.e.
$(\mathbf{v} \cdot \mathbf{Q}) \geq \frac{\chi}{T_{0 . Q}}=\frac{|\mathbf{Q}|^{2}}{2 m^{*}}-\alpha-\left.\frac{|\mathbf{C}|^{2}}{m^{*}}\right|_{C=0}=\frac{|\mathbf{Q}|^{2}}{2 m^{*}}-\alpha$ solved by real \mathbf{Q} only if $|\mathbf{v}|>v_{\mathrm{pe}}=\sqrt{\frac{2|\alpha|}{m^{*}}}$ since pair breaking velocity $v_{\mathrm{pb}}=\frac{\Delta}{k_{\mathrm{F}}}=\sqrt{\frac{\mid \mathrm{la\mid}}{\beta k_{\mathrm{F}}}}=\sqrt{\frac{|a|}{3 m}}$ we have the relation

$v_{\mathrm{pe}}=\sqrt{3} v_{\mathrm{pb}}$

- critical velocity of pair breaking < critical velocity of pair excitation \rightarrow stability of condensate controlled by pair breaking
The Galitskii-Feynman T-matrix approximation fails for superconductin state because of non-physical repeated collision
- MSC -Tmatrix theory of pairing and condensation is valid above and be low critical temperature: consistent description of pair-breaking effect MSC T-matrix justifies two basic assumptions of BCS theory: conde sate single-valued, excitations of bound electron pairs can be neglected

	critical velocities of	
	pair braaking	pair excitation
Galitskii	0	0
KM	Δ / k_{F}	0
TMSC	Δ / k_{F}	$\sqrt{3} \Delta / k_{\mathrm{F}}$

Approximations for Bose gases

The total energy in T-matrix approximation is
$U=\sum_{k \neq 0} E_{k} f_{\mathrm{B}}\left(E_{k}\right)+\sum_{k \neq 0} \frac{n_{0}^{2} \mathcal{T}^{2}(k)}{4 E_{k}}\left(1+2 f_{\mathrm{B}}\left(E_{k}\right)\right)$
quasi particles two-particle contribution
$\sum_{k \neq 0} E_{k} v_{k}^{2}+\frac{\tau(0)}{\Omega}\left(N^{2}-N N_{0}+\frac{1}{2} N_{0}^{2}\right)$
depletion attraction in momentum spac
and the total number of particles is
$N=N_{0}+\sum_{k \neq 0} f_{\mathrm{B}}\left(E_{k}\right) \quad+\sum_{k \neq 0} v_{k}^{2}\left(1+2 f_{\mathrm{B}}\left(E_{k}\right)\right)$
quasi particles ${ }^{k \neq 0}$ depletion
I. Hartree-Fock
$n=n^{\text {id }}, \quad \mu=\mu^{\text {id }}+2 n U_{0} \quad$ for $n_{0}=0$ $n=n_{0}+\Delta n, \mu=\left(2 n-n_{0}\right) U_{0}$ for $n_{0}>0$
II. Bogoliubov
$E \quad=\quad \sum_{k} E_{k} f_{\mathrm{B}}\left(E_{k}\right)$
attraction in momentum space $\frac{\lambda_{0} U_{0}}{2 \Omega}\left(2 N-N_{0}\right)-\sum_{k \neq 0} E_{k} v_{k}^{2}$
correlations, $\mu \approx n_{0} U_{0}$
$\sqrt{\left(\frac{\hbar^{2} k^{2}}{2 m}+n_{0} U_{0}\right)^{2}-n_{0}^{2} U_{0}^{2}}$
III. Popov (Hartree-Fock-Bogoliubov): $\mu=\left(2 n-n_{0}\right) U_{0}$

Chemical potential with ideal critical Condensate density, $\varepsilon_{\gamma}=\hbar^{2} \gamma^{2} / 2 m$
 density $n_{i d} \approx 0.059 \gamma^{3}$
$\lambda_{c 0}=8 \pi \hbar^{2} / m \gamma$
Popov and Hartree-Fock approximation show unphysical behavior due to overestimation of attraction in momentum space
instability at onset of BEC and first-order phase-transition (Maxwell con struction)

- T-matrix approximation medium effects compensate repulsive interac tion near onset of BEC, attraction in momentum space compensated, nevertheless first-order phase-transition
in coexistence region condensate density changes linearly

Strong repulsive-interacting Bose gas

Chemical potential, the vertical ar- Condensate density

rows mark the density hysteresis

- for strong repulsive interaction the attraction in momentum space is too strong to be compensated by medium effects
also T-matrix approximation yields multivalued region, which cannot be avoided by the Maxwell construction
therefore a true physical relevance is attributed to this behavior and it is interpreted as appearance of a hysteresis

