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Problems with paradigma of anomalous functions I

Questions:

1. Why appears only one and not two condensates of cooper pairs?
2. Stability limited by pair excitation into bound pairs or pair breaking?

3. BEC and pairing transition treated on same theoretical basis?

Our view:

e Anomalous functions are short cut to right results (mean field), but same
result possible without non-conserving assumptions

e Need unified theory above and below condensation temperature

e Fluctuations and condensation at same theoretical footing

Solution: T-matrix with multiple scattering corrections (MSC)

‘ Many-body T-matrixl

Two-particle collision in T-matrix
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‘ Dichotomy between gap and selfconsistencyl

Galitzkii-Feynman Kadanoff-Martin

Near pole (pairing, bound states) T-matrix is separable T'= AA
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no pole no gap equation two-pole structure, BCS gap equation

e satisfying selfconsistency required by Goldstones criterion yield no gap

e theories giving gap do not satisfy selfconsistency

| Removal of double countsl

Paradox: The worse approximation yields better result

Wrong conclusion: Superconductor and metals not covered by unified the-
ory

Solution: Galitskii-Feynman approximation includes double-counts

e Third particle ought to be different from the interacting pair: p # ¢ !
e Each momentum contributes as 1/volume — vanishs for infinite volume
e Normal state ok, but pairing or BE condensates state ¢ ~ volume

e Derivation of asymmetric Bethe-Salpeter equation (cluster-cluster dia-
grams) K. Morawetz J. Stat. Phys. 143 (2011) 482
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| Subtraction of double countsl

Gy =G — GG
GZ\ = Go+Go(X— Ei)GZ\

closing with the subtracted propagator X; = TZGZ\, short exercise

subtract own interaction in singular channel
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Bosons S. T. Beliaev, Soviet. Phys. JETP 7 (1958) 289
Fermions L. P. Gorkov, Soviet. Phys. JETP 7 (1958) 505

“normal” G1; = G and “anomalous” Green' function

results, not needed as starting (conservation laws completed)
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Green function and particle densityl

e the dispersion has two branches + I,
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e total density

e solve many-body T-matrix for separable interaction g, = (1 +

e pole of T-matrix yields binding energy w, < 0 for pair,

e wg = 2 (Thouless criterion), singular contribution condensation of
Cooper pairs (BCS) but also condensation of bound states

e nonsingular contributions collected in regular self-energy >.7°®

Attractive Fermi gasl
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‘ Stability of BCS condensate I

excited bound states (Q-mode), at zero frequency Cooper pairs (C-mode),

. 37~ . .
singular element 7pc = ,é—TAA, T-matrix of the condensation mode
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near T, T-matrix diverges, expand (GL equation Gorkov)
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pairs both ﬁropagators depend on gap, leads to energy
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e T-matrix in the Q-mode remains finite, cannot become singular once the
condensation develops in C-mode

e factor of two in non-linear term: non-condensed pairs feel gap due to
condensate twice stronger than by Cooper pairs in condensate (like bosons
out of BEC twice stronger)

e therefore parallel condensation in two competitive modes is excluded (tac-
itly assumed in BCS theory)
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‘ Excitation of Cooper pairs from the condensate I

N particles (Cooper pairs) in running frame v excite quasiparticle (bound
pair) €¢, possible if (Cherenkov) E; — Ef =v-Q — (eg — €) > 0, i.e.
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we have the relation
Upe = \/§Upb

e critical velocity of pair breaking < critical velocity of pair excitation
— stability of condensate controlled by pair breaking

e The Galitskii-Feynman T-matrix approximation fails for superconducting
state because of non-physical repeated collisions

e MSC -Tmatrix theory of pairing and condensation is valid above and be-
low critical temperature: consistent description of pair-breaking effects

e MSC T-matrix justifies two basic assumptions of BCS theory: conden-
sate single-valued, excitations of bound electron pairs can be neglected

critical velocities of
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‘ Approximations for Bose gasesl

The total energy in T-matrix approximation is
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and the total number of particles is
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quast particles depletion
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l1l. Popov (Hartree-Fock-Bogoliubov): u = (2n — ng)U,

‘ Weak repulsive-interacting Bose gasl
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Chemical potential with ideal critical ~Condensate density, ¢, = h272/2m,
density 1,5 ~ 0.059+° Ay = 87Th2/mfy
e Popov and Hartree-Fock approximation show unphysical behavior due to
overestimation of attraction in momentum space

e instability at onset of BEC and first-order phase-transition (Maxwell con-
struction)

e T-matrix approximation medium effects compensate repulsive interac-
tion near onset of BEC, attraction in momentum space compensated,
nevertheless first-order phase-transition

® in coexistence region condensate density changes linearly

‘ Strong repulsive-interacting Bose gasl
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Chemical potential, the vertical ar- Condensate density
rows mark the density hysteresis

e for strong repulsive interaction the attraction in momentum space is too
strong to be compensated by medium effects

@ also T-matrix approximation yields multivalued region, which cannot be
avoided by the Maxwell construction

e therefore a true physical relevance is attributed to this behavior and it is
interpreted as appearance of a hysteresis




