Asymmetric Bethe-Salpeter equation

Fachhochschule
Münster University of Applied Sciences

Scattering T-matrix	
Two-particle collision in T -matrix	
Schrödinger equation $\left(H_{0}+V\right) \psi=E \psi$	incoming waves scattered waves $\begin{array}{rlrl} \psi & =\psi_{0}+\psi^{\prime} \\ H_{0} \psi_{0} & =E \psi_{0} & \psi^{\prime} & =\frac{1}{E-H_{0}-V+i 0} V \psi_{0} \end{array}$
Many-body T-matrix	
Two-particle collision in	
Scattered wave	reconstr. wave function T-matrix
$\Psi^{\prime}=\frac{1}{E-H_{0}-V+i 0} V \Psi_{0}=\frac{V}{E-H_{0}+i 0} V\left(\Psi_{0}+\Psi^{\prime}\right)=\frac{1}{E-H_{0}+i 0} T \Psi_{0}$	
	$=\quad+\quad \rightarrow$

Dichotomy between gap and selfconsistency
Galitzkii-Feynman
Kadanoff-Martin

Near pole (pairing, bound states) T-matrix is separable $T=\triangle \Delta$
$\vec{k}=\underset{k}{-}+\underset{k}{\Delta_{-k} \Delta_{k}} \vec{k}=\underset{k}{-}+\underset{-k}{\Delta}$
$G^{-1}(\omega, \mathbf{k})=\omega+\epsilon_{\mathbf{k}}-\Delta^{2} G(-\omega,-\mathbf{k}) \quad G^{-1}(\omega, \mathbf{k})=\omega+\epsilon_{\mathbf{k}}-\frac{\Delta^{2}}{\omega+\epsilon_{-\mathbf{k}}}$
no pole no gap equation two-pole structure, BCS gap equation

- Selfconsistency needed for physical distributions, Goldstone theorem, conservation laws
- Only partial selfconsistency lead to the superconducting gap
- This conflict is known as selfconsistency gap dichotomy:
-theories satisfying selfconsistency required by Goldstones criterion yield zero gap
- theories giving the gap do not satisfy selfconsistency
- Worse approximation (Kadanoff - Martin) leads to better results
- Asymmetric selfconsistency is necessary to get gap equation
- Asymmetry violates Kadanoff/Baym criterion $B \rightarrow$ no particle conserva-- Asymm
tion?

Removal of double counts

Paradox: The worse approximation yields better result Wrong conclusion: Superconductor and normal metal not be covered by unified theory Solution: Galitskii-Feynman approximation includes double-counts fatal in superconducting state

- Third particle ought to be different from the interacting pair: $p \neq q$! - Each momentum contributes as 1 /volume \rightarrow vanish for infinite volume - Normal state ok, but pairing or BE condensates state $q \sim$ volume

$$
\begin{aligned}
& \\
& \text { one obtains } \\
& \text { closing with the subtracted propagator } \Sigma_{i}=T_{i} \bar{G}_{\lambda} \text {, short exercise } \\
& G^{-1}=G_{0}^{-1}-\Sigma=G_{0}^{-1}-\Sigma^{\prime}-\Sigma_{i} \\
& =G_{0}^{-1}-\Sigma^{\prime}-T_{i} \bar{G}_{\lambda}=G_{0}^{-1}-\Sigma^{\prime}-T_{i}\left(\bar{G}_{0}^{-1}-\bar{\Sigma}^{\prime}\right)^{-1} \\
& \text { or explicitly } \\
& G=\frac{\bar{G}_{0}^{-1}-\bar{\Sigma}^{\prime}}{\left[G_{0}^{-1}-\Sigma^{\prime}\left[\bar{G}_{0}^{-1}-\bar{\Sigma}^{\prime}\right]-T_{i}\right.} \quad \begin{array}{ll}
\text { free propagator } & \text { "proper" selfenergy } \\
\text { "anomalous" selfenergy } & G_{0}^{-1}=\omega-\epsilon_{p} \\
\Sigma_{11}(p) \equiv \Sigma^{\prime}(p) \\
\Sigma_{12}(p) \equiv \Delta(p)
\end{array} \\
& \text { in matrix form } G=G^{0}+G^{0} \Sigma \mathbf{G} \text { with } \\
& \mathbf{G}=\left(\begin{array}{cc}
G_{11} & G_{12} \\
\bar{G}_{12} & \bar{G}_{11}
\end{array}\right), \mathbf{G}_{0}=\left(\begin{array}{cc}
G_{0} & 0 \\
0 & \bar{G}_{0}
\end{array}\right), \boldsymbol{\Sigma}=\left(\begin{array}{cc}
\Sigma_{11} & \Sigma_{12} \\
\Sigma_{12} & \pm \Sigma_{11}
\end{array}\right)
\end{aligned}
$$

Bosons S. T. Beliaev, Soviet. Phys. JETP 7 (1958) 289
Fermions L. P. Gorkov, Soviet. Phys. JETP 7 (1958) 505
"normal" $G_{11} \equiv G$ and "anomalous" Green' function
$G_{12} \equiv \frac{-\Sigma_{12}}{\left(\omega+\epsilon+\Sigma_{11}\right)\left(\omega-\epsilon-\Sigma_{11}\right)+\Sigma_{12}^{2}}$
results, not needed as starting (conservation laws completed)

Diagrammatic derivation

Martin-Schwinger hierarchy coupling one-particle Green's function to twoparticle one etc
$\left[i \partial_{t_{1}}+\frac{\nabla_{r_{1}}^{2}}{2 m}-U(1)\right] G\left(11^{\prime} ; U\right)=\delta\left(1-1^{\prime}\right) \mp i \int d \overline{1} V(1, \overline{1}) G\left(1 \overline{1} 1^{\prime} \overline{1}^{+} ; U\right)$
rewritten in terms of correlated
Green's functions
$G\left(121^{\prime} 2^{\prime} ; U\right)=G_{c}+G_{H F}$

- P. Lipavský: Multiple scattering corrections to the T-matrix approximation: Unified theory of normal and superconducting states, Phys. Rev. B 78 (2008) 214506.
- K. Morawetz: Equivalence of channel-corrected T-matrix and anomalous propagator approach, Phys. Rev. B 81 (2010) 092501.
- K. Morawetz: Asymmetric Bethe-Salpeter equation for pairing and condensation, J. Stat. Phys. 143 (2011) 482.
- B. Šopík, P. Lipavský, M. Männel, K. Morawetz, P. Matlock: Con- Funding via the Deutsche Forschungsgemeinschaft, DFG-CNPq project serving T-matrix theory of superconductivity, Phys. Rev. B. 84 (2011) 444BRA-113/57/0-1, the DAAD and financial support by the Brazilian 094529.

Screened ladder channel

Special set of diagrams t-channel

$$
\begin{aligned}
& \text { Specia } \\
& (\mathrm{p}-\mathrm{h})
\end{aligned}
$$

$$
\begin{aligned}
& \text { (p-n) } \\
& =G_{s}=G_{\mathrm{HF}}+G_{\mathrm{HF}}\left(\Sigma_{s}-\Sigma_{\mathrm{F}}\right) G_{s} \\
& \text { screened potential } \\
& \text { analogously s-channel (p-p) and u-channel (maximally crossed) } \\
& \quad G_{T}=G_{0}+G_{0} \Sigma_{T} G_{T}=G_{\mathrm{HF}}+G_{\mathrm{HF}}\left(\Sigma_{T}-\Sigma_{\mathrm{HF}}\right) G_{T}
\end{aligned}
$$

Cluster-cluster diagrams

$$
\overline{\mathbf{G}_{\mathrm{c}}}
$$

$$
x_{\mathbf{G}}^{\mathbf{G}_{\mathbf{c}}}
$$

$=\overline{+i} \quad \mathbf{G}$
For any ch
propagator
$G_{\Delta}=G_{p}-G_{p} \Sigma_{\Delta} G_{\Delta}=G_{0}+G_{0}\left(\Sigma_{T}-\Sigma_{\Delta}\right) G_{\Delta}$
with $p=s, \tilde{T}, T$ denoting the channels and

| \mathbf{K} | $\mathbf{G}_{\mathrm{c}}^{\Delta}$ |
| :---: | :---: | :---: | near a pole subtracted T-matrix scheme ap-

$=, \widehat{\mathrm{G}_{\mathrm{c}}^{2}}$,

Summary

1. The Galitskii--Feynman T-matrix approximation fails in the superconduct ing state because of non-physical repeated collisions
2. Separating singular channel from selfenergy avoiding repeated collisions leads to propagators of Beliaev form for Bosons or Nambu-Gorkov form for Fermions
3. Auxiliary anomalous Green's function is consequence of theory not assumed ad-hoc, all information derived without this quantity
4. Asymmetric selfconsistency (channel-dressed, totally dressed) required to obtain superconductivity
5. Proof that asymmetric and symmetric selfconsistency can be mapped 6. Developed a microscopic theory of pairing and condensation is valid Developed a microscopic terare. consistent description of parir above and below effects
6. Applications for interacting Bose/Fermi systems:

- M. Männel, K. Morawetz, P. Lipavský, Multiple condensed phases in attractively interacting Bose systems, New J. Phys. 12 (2010) 033013.
- M. Männel, K. Morawetz, M. Schreiber, P. Lipavský, Phase
- M. Männel, K. Morawetz, M. Schreiber, P. Lipavský, Phase diag.
energy of interacting Bose gases, Phys. Rev. B 78 (2008) 054508.
- K. Morawetz, N. H. March and R. H. Squire, The chemical potential for the in-
- K. Morawetz, N. H. March and R. H. Squire, The chemical potential for the in-
homogeneous electron liquid in terms of its kinetic and potential parts with special consideration of the surface potential step and BCS-BEC crossover, Phys. Lett. A 372 (2007) 1707-1711.
- K. Morawetz, M. Männel, M. Schreiber, Phase diagram for interacting Bose gases,

Phys. Rev. B 76 (2007) 075116.

- K. Morawetz, M. Schreiber, B. Schmidt, P. Lipavsky, Enhancement of fermion pairing
due to the presence of resonant cavities, Phys. Rev. B 72 (2005) 1745041-5 Ministry of Science and Technology is acknowledged.

