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Formation of correlations in strongly coupled plasmas
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Abstract

The formation of binary correlations in plasma is studied from the quantum kinetic equation. It is shown that this
formation is much faster than dissipation due to collisions. In a hot (dense) plasma the correlations are formed on the
scale of inverse plasma frequency (Fermi energy). We derive analytical formulae for the time dependency of the potential
energy which measures the extent of correlations. We discuss the dynamical formation of screening and compare with the
statically screened result. Comparisons are made with molecular dynamic simulations. ( 1998 Elsevier Science B.V. All
rights reserved.

Recent lasers allow the creation of a high-density
plasma within few femtoseconds and observe its
time evolution on a comparable scale [1,2]. In this
paper we discuss the very first time regime, the
transient regime, in terms of the energy balance. Let
us assume a typically set up of molecular dynamics.
One takes N particles, distributes them randomly
into a box and let them classically move under
Coulomb forces due to their own charges. Their
first movement thus forms correlations which lower
the Coulomb energy »

C
"e2/r. This build up of

screening stops when the effective Debye potential
»

D
"e2e~ir/r is reached. We will discuss the

formation of correlations in terms of correlation
energy. To this end we can use a kinetic equation,
which leads to the total energy conservation. It is
immediately obvious that the ordinary Boltzmann
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equation cannot be used because the kinetic energy
is an invariant of its collision integral. We have to
consider non-Markovian kinetic equations of
Levinson type [1]:
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denotes the energy difference between initial and
final states. The retardation of distributions,
f
a
(k, tM ), fM @

a
"1!f @

a
(k!q, tM ), etc., is balanced by the

lifetime q. The total energy conservation for
Levinson’s equation has been proved in Ref. [3].
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Fig. 1. The formation of correlation energy due to molecular dynamic simulations [8] together with the result of Eq. (3) for a plasma
parameter C"0.1 (left) and C"1 (right). The upper curve is the static and the lower the dynamical calculation of (3). The latter one
approaches the Debye—Hückel result.

The solution in the short-time region t;q can be
written down analytically. In this time domain
we can neglect the time evolution of distribu-
tions, f

a
(tM )"f

a
(0), and the lifetime factor,

expM!(t!tM )/qN"1. The resulting expression for
Eq. (1) then describes how two particles correlate
their motion to avoid the strong interaction re-
gions. This very fast formation of the off-shell con-
tribution to Wigner’s distribution has been found
in numerical treatments of Green’s functions [4,5].
Of course, starting with a sudden switching approx-
imation we have the Coulomb interaction and dur-
ing the first transient time period the screening is
formed. This can be described by the non-Mar-
kovian Lenard — Balescu equation [6] instead of
the statically screened Eq. (1) leading to the dynam-
ical expression of the correlation energy. To dem-
onstrate its results and limitations, we use Maxwell
initial distributions at the high temperature limit,
where the distributions are non-degenerate. From
Eq. (1) we find with
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where we used z"u
p
Jt2!it+

T
and z

1
"

u
p
J2t2!it +

T
. This is the analytical quantum result

of the time derivative of the formation of a correlation
for statically as well as dynamically screened poten-
tials. For the classical limit we are able to integrate
expression (2) with respect to time and arrive at
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In Fig. 1, these formulae are compared with mo-
lecular dynamic simulations [8] for two values of
the plasma parameter C"0.1 and 1. This para-
meter C"e/a¹, where a

e
"(3/4pn)1@3 is the inter-

particle distance or Wigner—Seitz radius which
measures the strength of the Coulomb coupling.
Ideal plasma are found for C;1. In this region the
static formula (3) closely follows the major trend of
the numerical result, see Fig. 1. The agreement is in
fact surprising, because the static result underesti-
mates the dynamical long time result of De-

bye—Hückel J3
2C3@2 by a factor of two, which can be

seen from the long time and classical limit
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The first result represents the Montroll correlation
energy [9,10]. The explanation for this fact is that
we can prepare the initial configuration within our
kinetic theory such that sudden switching of inter-
action is fulfilled. However, in the simulation ex-
periment we have initial correlations which are due
to the set up within the quasiperiodic boundary
condition and Ewald summations. This obviously
results in to an effective statically screened Debye
potential, or at least the simulation results allow for
this interpretation.

For C"1, see Fig. 1, non-ideal effects become
important and the formation time is under-
estimated by Eq. (3). This is due to non-ideality
which was found to be an expression of memory
effects [11] and leads to a later relaxation.

The characteristic time of formation of correla-
tions at high temperature limit is given by the

inverse plasma frequency q
#
+1u"J2/vi. The in-

verse plasma frequency indicates that the long-
range fluctuations play the dominant role. This is
equivalent to the time a particle needs to travel
through the range of the potential with a thermal
velocity v

5)
. This confirms the numerical finding of

[12] that the correlation or memory time is propor-
tional to the range of interaction. In the low-tem-
perature region, i.e., in a highly degenerated system
k<¹, one finds a different picture [13]. Unlike in
the classical case, the equilibrium limit of the de-
generated case is rapidly built up and then oscil-
lates around the equilibrium value. We can define
the build up time q

#
as the time where the correla-

tion energy reaches its first maximum, q
#
"1.0 +/k

with the Fermi energy k. Note that q
#

is in agree-
ment with the quasiparticle formation time known
as Landau’s criterion. Indeed, the quasiparticle
formation and the build up of correlations are two
alternative views of the same phenomenon. The
formation of binary correlations is very fast on the
time scale of dissipative processes. Under extremely
fast external perturbations, like the massive femto
second laser pulses, the dynamics of binary correla-
tions will hopefully become experimentally accessible.
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