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Nonlocal Quantum Kinetic Theory
and the Formation of Correlations

K. Morawetz

Abstract The quantum version of the Boltzmann equation remains still the basis of
modern transport theories. Extensions become necessary for transient-time effects
like the femtosecond response and for strongly correlated systems. At short time
scales higher correlations have no time to develop yet and femto-second laser exci-
tation of collective modes in semiconductors as well as quenches of cold atoms in
optical lattices can be described even analytically by fluctuations of the meanfield.
For plasma systems exposed to a sudden switching, analytical results are available
from the time-dependent Fermi’s Golden Rule in good agreement with the results of
two-time Green’s functions solving the Kadanoff and Baym equation. At later times
when correlations develop, a kinetic equation of nonlocal and non-instantaneous
character unifies the achievements of the transport in dense quantum gases with the
Landau theory of quasiclassical transport in Fermi systems. The numerical solution
is not more expensive than solving the Boltzmann equation since large cancellations
in the off-shell motion appear which are hidden usually in non-Markovian behaviors.
The quasiparticle drift of Landau’s equation is connected with a dissipation governed
by a nonlocal and non-instant scattering integral in the spirit of Enskog corrections.
These corrections are expressed in terms of shifts in space and time that characterize
non-locality of the scattering process. In this way quantum transport is possible to
recast into a quasi-classical picture. The balance equations for the density, momen-
tum, energy and entropy include besides quasiparticle also the correlated two-particle
contributions beyond the Landau theory. The medium effects on binary collisions
are shown to mediate the latent heat, i.e., an energy conversion between correlation
and thermal energy.
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25.1 Introduction

Cold atoms in optical traps [1] and the femtosecond pump and probe experiments
[2, 3] allow now to resolve the time-dependent formation of correlations. This has
triggered an enormous theoretical activity [4]. Both different physical systems, the
long-range Coulomb [5] as well as short-range Hubbard systems can be described by
a common theoretical approach leading to a unique formula to describe the formation
of correlations at short-time scale [6]. The basic observation here is that correlations
need time to be formed such that themeanfield approximation is sufficient to describe
the basic features of short-time formation of correlations. Calculating nonequilibrium
Green’s functions [7, 8] allows one to describe the formation of collective modes
[3, 9], screening [7] and even exciton population inversions [10].

This becomes different at later times when essentially strong correlations are
formed after a sudden quench. Here, the time-dependent description is covered by
various kinetic equation approaches. It started with the foundation of Ludwig Boltz-
mann’s famous equation [11] and has been rapidly developed, from important clas-
sical contributions [12–16] to quantum extensions, where the pioneering work along
these lines was performed by [17, 18]. In the theory of condensed systems cov-
ered by the Landau concept of quasiparticles [19], the quantum Boltzmann-Uhling-
Uhlenbeck (BUU) equation, differs from the classical one in the collision term,which
takes into account that the final scattering states can be occupied and consequently
blocked by the Pauli exclusion principle. Moreover, the quantum mechanical transi-
tion rate, rather than the classical one is used. The scattering integral of theBoltzmann
equation remains still local in space and time. In other words, the Landau theory does
not include a quantum mechanical analogy of virial corrections studied in the theory
of gases.

To extend the validity of the Boltzmann equation to moderately dense gases,
Clausius and Boltzmann included the space non-locality of binary collisions (cf.
Chapter 16 in Ref. [20]). After one century, virial corrections won new interest as
they can be incorporated intoMonte Carlo simulationmethods [21]. Themicroscopic
theory of nonlocal corrections to the collision integral has been pioneered within the
theory of gases by many authors [22–38].

In the limit of small scattering rates, the transport equation for theGreen’s function
is converted into the kinetic equation ofBoltzmann type by the extended quasiparticle
approximation corresponding to the ρ[ f ] functional. The resulting quantum kinetic
theory unifies the achievements of transport in dense gases with the quantum trans-
port of dense Fermi systems [39–43]. The quasiparticle drift of Landau’s equation
is connected with a dissipation governed by a nonlocal and non-instant scattering
integral in the spirit of Enskog corrections. These corrections are expressed in terms
of shifts in space and time that characterize the non-locality of the scattering process
[44]. In this way quantum transport is possible to recast into a quasiclassical picture
suited for simulations. The balance equations for the density, momentum, energy
and entropy include quasiparticle contributions and the correlated two-particle con-
tributions beyond the Landau theory as we will demonstrate in Sect. 25.3.2.
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First we will discuss the transient time regime where the correlations are formed
after a sudden quench with applications to femtosecond pumb and probe as well as
cold atom experiments. Then we present the nonlocal kinetic theory in Sect. 25.3,
which results from cancellation of off-shell parts by a proper extended quasiparticle
picture. Two applications from nuclear and superconducting physics finally illustrate
the usefullness of the concept in Sect. 25.4.

25.2 Formation of Correlations

A first guess of the time-dependent formation of correlations can be found from the
time-dependent Fermi golden rule
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nn′
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(25.1)

expressing the transition probability between states n and n′ which we consider as
the state before and after the collision, and ΔE = εk + εp − ε′

k+q − ε′
p−q denotes

the energy difference between initial and final states. Taking the occupation factors
into account, the time-dependent formation of kinetic energy is expected to have the
form

Ekin(t) =
∫
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�
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ΔE
ρk+qρp−q(1 − ρk)(1 − ρp). (25.2)

Exactly this expression is obtained if we use the Levinson equation [45] (with � = 1)
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(25.3)

and neglect the memory in the distribution functions (finite duration approxima-
tion). This memory over-counts correlations [43] resulting into too much off-shell
correlations [46].

The solution of the Levinson equation (25.3) in the short-time region t � τ can
be written down analytically. It shows how the two-particle and the single-particle
concept of the transient behavior is combined in the kinetic equation. The right-hand
side of Eq. (25.3) describes how two particles correlate their motion to avoid strong
interaction regions. Since the process is very fast, the on-shell contribution to δρk ,
proportional to t/τ , can be neglected in the assumed time domain and the δρ has
the pure off-shell character as can be seen from the off-shell factor sin(tΔE)/ΔE .
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The off-shell character of mutual two-particle correlations is thus reflected in the
single-particle Wigner distribution.

Starting with a sudden switching approximation, due to Coulomb interaction the
screening is formed during the first transient time period and one finds analytically
[47] the quantum result of the time derivative of the formation of correlation for
statically as well as dynamically screened potentials

∂

∂t

E static
corr (t)

n
= −e2κT

2�
Im

[
(1 + 2z2)ez2(1 − erf(z)) − 2z√

π

]
(25.4a)
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, (25.4b)

where z = ωp

√
t2 − i t �

T and z1 = ωp

√
2t2 − i t �

T . In Fig. 25.1 these formulas are

compared with molecular dynamic simulations [48] in plasmas with � = e2

ae T = 1
and the Wigner-Seitz radius ae.

The characteristic time of formation of correlations in the high temperature limit
is the time of the inverse plasma frequency τc ≈ 1

ωp
= √

2/vthκ , indicating that the
dominant role is played by long range fluctuations. On the other hand, we also see that
the correlation time is found to be given by the time a particle needs to travel through
the range of the potential with a thermal velocity vth and is not given by the time
between successive collisions as one might have thought. For dense Fermi systems,
like nuclear matter, one finds the build-up time where the correlation energy reaches
its first maximum as the inverse Fermi energy τc = �/ε f , in agreement with the
quasiparticle formation time known as Landau’s criterion. Indeed, the quasiparticle
formation and the build up of correlations are two alternative views of the same
phenomenon.
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Fig. 25.1 (Left) The formation of correlation energy due to molecular dynamic simulations [48]
togetherwith the statically screened result of Eq. (25.4a) (curve below) and the dynamically screened
result (curve above) of Eq. (25.4b) for a plasma, and (Right) a counter-flowing streams of nuclear
matter [49] from a solution of the Kadanoff-Baym equation (KB) together with the results from the
finite duration approximation and the Boltzmann equation
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25.2.1 Quantum Quenches and Sudden Switching

Special preparation of cold atoms in optical lattices allows to study the local relax-
ation [1, 50] and to explore dissipation mechanisms [51]. We consider the time
evolution of the reduced density matrix 〈p + 1

2q|δρ|p − 1
2q〉 = δ f (p, q, t)which is

given by linearization δ[H, ρ] = [δH, ρ0] + [H0, δρ] of the kinetic equation

ρ̇ + i[H, ρ] = ρ l.e. − ρ

τ
(25.5)

with respect to an external perturbation δV ext. The effective Hamiltonian consists
of the quasiparticle energy, the external and induced mean-field 〈p + 1

2q|δH |p −
1
2q〉 = δV ext + Vqδnq given by the interaction potential Vq and the density variation
δnq . As possible confining potential we assume a harmonic trap V trap = 1

2 K x2,
which leads to 〈p + 1

2q|δ[V trap, ρ]|p − 1
2q〉 = −K∂p∂qδ f (p, q, t).

The kinetic equation (25.5) is assumed to relax towards a local equilibrium of
Fermi/Bose distribution with an allowed variation of the chemical potential
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Here, we use the short-hand notation Δ f = f0(p + q
2 ) − f0(p − q

2 ) and Δε =
εp+ q

2
− εp− q

2
. This variation of the chemical potential allows to enforce the den-

sity conservation n =∑p f =∑p f l.e. [52–54] leading to the Mermin correction,

i.e. a relation between density variation δn(q, t) = Π̃(t, ω = 0)δμ(q, t) and the
polarization in random phase approximation (RPA)
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Π̃(t, ω) =
∫

d(t − t ′)eiω(t−t ′)Π(t, t ′). (25.7b)

The linearized kinetic equation (25.5) is solved considering themomentumderiva-
tives of the last term as perturbation to obtain [6]
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}
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(25.8)



302 K. Morawetz

In case of a sudden quench the interaction is switched on suddenly and no external
perturbation will be assumed δV ext = 0. Let us consider the time evolution of an
empty place in the lattice if each second place was initially populated. The density
nt = n

2 + δnt starts with n0 = 0, which means δn0 = −n/2 as initial condition. The
solution without a confining trap (K = 0) reads

δns = −n

2

(s + 1
τ
)2 + b2√

(s + 1
τ
)2 + 4Jb(s2 + s

τ
+ nbVq + b2)

� � (25.9a)
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2τ

× (2γ τ cos γ (t − x) + (1 − 2bnVqτ
2) sin γ (t − x)

)
, (25.9b)

where γ 2 = nbV + b2 − 1/4τ 2, and J0 the Bessel function. Besides the interaction-
free result we obtain an additional contribution due to the interaction and dissipation
presented by the relaxation time.Without interaction, V = 0, and damping 1/τ → 0,
we obtain the exact result of [50].

In Fig. 25.2 we compare Eq. (25.9) with the experimental data [1] where we plot
the interaction free evolution together with the interaction one. The main effect of

Fig. 25.2 Comparison of the experimental data of [1] (dots) with the RG calculation (thin line)
[50] from [6]. Left: Mermin’s correction of conserving relaxation time τ = 0.6�/J approximation,
Eq. (25.9), without (gray) and with interaction (black). Right: With (black) and without (gray) the
influence of the trapping potential K/J
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interaction is the damping which brings the curves nearer to the experimental data.
Here, we use the parameter for the lattice constant given by half of the short laser
wavelength a = λ/2 = 765 nm, which provides a wave vector of q = π�/a, and
an initial density n = 1/2a with each second place filled. The relaxation time char-
acterizes dissipative processes which we assume to arise due to polaron scattering.
These lattice deformation processes are dominated by hopping transport at high tem-
peratures and band regime transport at low temperature with the transition given by
�/τ = 2J exp (−S), where S describes the ratio of polaron binding to optical phonon
energy. This quantity is generally difficult to calculate [55] but in the order of one.
We will use it as fit parameter and find a common value τ = 0.6�/J for the results
in the figures presented here. We see that the analytic result, Eq. (25.9), describes the
data slightly better and we can give the time evolution up to more oscillations than
it was possible by numerical renormalization group techniques.

25.2.2 Femtosecond Laser Response

Now we are interested in the short-time response of the system to an external per-
turbation V ext. This is different from sudden quench since here we have initially
δ f (p, q, 0) = 0 and the system is driven out of equilibrium by V ext. As the result we
will obtain the dielectric response which gives microscopic access to optical proper-
ties. Integrating Eq. (25.8) over momentum one obtains the time-dependent density
response

δn(q, t) =
t∫

t0

dt ′χ(t, t ′)V ext
q (t ′) (25.10)

describing the response of the system with respect to the external field in contrast
to the polarization function, Eq. (25.7), which is the response to the induced field.
One obtains the equation for χ(t, t ′) from Eq. (25.10) by interchanging integrations
in Eq. (25.8)

χ(t, t ′) = Π(t, t ′) +
t∫

t ′

dt̄
{[

Π(t, t̄)Vq + I (t, t̄)
]
χ(t̄, t ′) + R(t, t̄)

}
, (25.11)

with the polarization Eq. (25.7) and Mermin’s correction
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For cold atoms on the lattice we have obtained already the solution, Eq. (25.8),
which we can use here with δ f (0) = 0 and we have also
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Π(t, t ′) = ne
t ′−t

τ sin [b(t ′ − t)], (25.13a)

I (t, t ′) = 1

τ
e

t ′−t
τ cos [b(t ′ − t)]. (25.13b)

This will lead to the same response formula as a gas of particles with the ther-
mal Fermi/Bose distribution for f p. For the latter one we work in the limit of long

wave lengths q → 0 and the leading terms are Π(t, t ′) ≈ q2n(t ′)
m (t ′ − t)e(t ′−t)/τ and

I (t, t ′) ≈ 1
τ

e(t ′−t)/τ , with the time-dependent density n(t).
We introduce the collective mode of plasma/sound-velocity oscillations for

Coulomb gas and for the Hubbard models respectively

ω2
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{
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mε0
for Vq = e2�2

ε0q2 , εp = p2

2m ,

bnaU for Vq = Ua, εp = 2J (1 − cos pa
�

),
(25.14)

where we have used already b = 4J sin2 aq
2�
. For Coulomb interactions one has an

optical mode while for atoms on the lattice the mode is acoustic.
For the gas of particles it is convenient to transform Eq. (25.11) into a differential

equation

χ̈ (t t ′) + 1

τ
χ̇(t t ′) + ω2

pχ(t t ′) = 0 (25.15a)

χ(t, t) = 0, χ̇(t, t ′)|t=t ′ = −ω2
p/Vq , (25.15b)

where the influence of the trap can be considered as well [6].
Interestingly, both solutions, the one for the Hubbard lattice and the one for the

gas of particles, lead to the same result of the integral equation (25.11) via Eq. (25.15)
for the two-time response function

V χ(t, t ′) = −ω2
p

γ
e− t−t ′

2τ sin γ (t − t ′), (25.16)

but with a different collective mode γ =
√

ω2
p − 1

4τ 2 for the Coulomb gas, and γ =√
ω2

p + b2 − 1
4τ 2 for cold atoms. In this sense, we consider Eq. (25.16) as universal

short-time behavior.
The pump pulse is creating charge carriers in the conduction band and the probe

pulse is testing the time evolution of this occupation [3]. The time delay after this
probe pulse T = t − t0 is Fourier transformed into frequency. The inverse dielectric
function is then given by

1

ε(ω, t)
= 1 +

t−t0∫
0

dT eiωT V χ(t, t − T ). (25.17)
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The integral inEq. (25.17)withEq. (25.16) describes the experimental time formation
of plasma mode quite accurately [6]. The virtue of Eq. (25.17) is also that the long-
time limit yields correctly the Drude formula

lim
t→∞

1

ε
= 1 − ω2

p

γ 2 − ω(ω + i
τ
)
, (25.18)

leading to the Drude conductivity which is not easy to achieve within short-time
expansions [56], and which had provided the wrong long-time limit 1 − ω2

p/[γ 2 −
(ω + i/τ)2] before.

25.3 Nonlocal Kinetic Theory

At later times, when correlations develop, the off-shell motion can be eliminated
from the kinetic equation, which requires to introduce an effective distribution (the
quasiparticle distribution f ) fromwhich theWigner distribution ρ can be constructed

ρ[ f ] = f + ℘

∫
dω

2π

1

ω − ε

∂

∂ω

(
(1 − f )σ<

ω − f σ>
ω

)
. (25.19)

Here,σ> andσ< denote the self-energies describing all correlations and ε is the quasi-
particle energy. This relation represents the extended quasiparticle picture derived
for small scattering rates [41–43, 57]. The limit of small scattering rates has been
first introduced by Craig [58]. An inverse relation f [ρ] has been constructed [59].
For equilibrium non-ideal plasmas this approximation has been employed by [60,
61] and has been used under the name of the generalized Beth-Uhlenbeck approach
by [62] in nuclear matter for studies of the correlated density. The authors in Ref. [63]
have used this approximation with the name ‘extended quasiparticle approximation’
for the study of the mean removal energy and high-momenta tails of Wigner’s distri-
bution. The non-equilibrium form has been derived finally as the modified Kadanoff
and Baym ansatz [64].

This extended quasiparticle picture leads to balance equations which include
explicit correlation parts analogous to the virial corrections. The firmly established
concept of the equilibrium virial expansion has been extended to nonequilibrium
systems [42] although a number of attempts have been made to modify the Boltz-
mann equation so that its equilibrium limit would cover at least the second virial
coefficient [24, 65, 66]. The corrections to the Boltzmann equation have the form
of gradients or nonlocal contributions to the scattering integral. Please note that the
nature of two-particle correlations induces gradients and therefore nonlocal kinetic
and exchange energies [67, 68].
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25.3.1 Nonlocal Kinetic Equation

The nonlocal quantum kinetic equation following from the extended quasiparticle
approximation reads [42]

∂ f1
∂t

+ ∂ε1

∂k
∂ f1
∂r

− ∂ε1

∂r
∂ f1
∂k

= I in1 − I out1 (25.20)

with the scattering-in

I in1 =
∑

b

∫
d3 p

(2π)3

d3q

(2π)3
2πδ (ε1 + ε̄2 − ε̄3 − ε̄4 − 2ΔE )

×
(
1 − 1

2

∂Δ2

∂r
− ∂ε̄2

∂r
∂Δ2

∂ω

)
ω=ε1+ε̄2

(1 − f1 − f̄2) f̄3 f̄4

×
∣∣∣∣tSC

(
ε1 + ε̄2 − ΔE ,k − ΔK

2
,p − ΔK

2
,q, r − Δr , t − Δt

2

)∣∣∣∣
2

,

(25.21)

and the scattering-out by replacing f ↔ 1 − f and changing the sings of the shifts.
All distribution functions and observables have the arguments

ε1 ≡ εa(k, r, t), (25.22a)

ε2 ≡ εb(p, r + Δ2, t), (25.22b)

ε3 ≡ εa(k − q + ΔK , r + Δ3, t + Δt ), (25.22c)

ε4 ≡ εb(p + q + ΔK , r + Δ4, t + Δt ) (25.22d)

and a bar indicates the reversed sign of the Δ’s.
In the scattering-out (scattering-in is analogous) one can see the distributions of

quasiparticles f1 f2 describing the probability of a given initial state for the binary
collision. The hole distributions giving the probability that the requested final states
are empty and the particle distribution of stimulated collisions combine together
in the final state occupation factors like 1 − f3 − f4 = (1 − f3)(1 − f4) + f3 f4.
The scattering rate covers the energy-conserving δ-function, and the differential
cross section is given by the modulus of the T -matrix, |tSC|, reduced by the wave-
function renormalizations z1 z̄2 z̄3 z̄4 [69]. We consider here the linear expansion in
small scattering rates, therefore the wave-function renormalization in the collision
integral is of higher order.

All Δ’s are derivatives of the scattering phase shift φ,

t R
SC = |tSC| eiφ, (25.23)
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according to the following list

ΔK = 1

2

∂φ

∂r
, (25.24a)

ΔE = −1

2

∂φ

∂t
, (25.24b)

Δt = ∂φ

∂ω
, (25.24c)

Δ2 = ∂φ

∂p
− ∂φ

∂q
− ∂φ

∂k
, (25.24d)

Δ3 = −∂φ

∂k
, (25.24e)

Δ4 = −∂φ

∂q
− ∂φ

∂k
, (25.24f)

Δr = 1

4
(Δ2 + Δ3 + Δ4) . (25.24g)

As special limits, this kinetic theory includes theLandau theory aswell as theBeth-
Uhlenbeck equation of state [70, 71], which means correlated pairs. The medium
effects on binary collisions are shown to mediate the latent heat which is the energy
conversion between correlation and thermal energy [42, 72]. In this respect the
seemingly contradiction betweenparticle-hole symmetry and time reversal symmetry
in the collision integral was solved [73]. Compared to the Boltzmann-equation, the
presented form of virial corrections only slightly increases the numerical demands
in implementations [74–77] since large cancellations in the off-shell motion appear
which are hidden usually in non-Markovian behaviors. Details how to implement the
nonlocal kinetic equation into existing Boltzmann codes can be found in [77].

25.3.2 Balance Equations

Wemultiply thekinetic equation (25.20)with avariable ξ1 = 1,k, ε1,−kB ln[ f1/(1 −
f1)] and integrate overmomentum. It results in the equation of continuity, theNavier-
Stokes equation, the energy balance and the evolution of the entropy, respectively. All
these conservation laws or balance equations for the mean thermodynamic observ-
ables have the form

∂〈ξ qp + ξmol〉
∂t

+ ∂(jqpξ + jmol
ξ )

∂r
= Igain, (25.25)
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consisting of a quasiparticle part

ξ qp =
∫

d3k

(2π)3
ξ1 f1 (25.26)

and the correlated or molecular contribution

ξmol =
∫

d3kd3 pd3q

(2π)9
|tSC(ε1 + ε2, k, p, q)|2Δξ1 + ξ2

2

×2πδ(ε1 + ε2 − ε3 − ε4) f1 f2(1 − f3 − f4). (25.27)

The latter one has the statistical interpretation of the rate of binary processes D =
|tSC|2 2πδ(ε1 + ε2 − ε3 − ε4) (1 − f3 − f4) f1 f2 weighed with the lifetime of the
molecule Δt , respectively. This has the form of a molecular contribution as if two
particles form a molecule.

The quasiparticle currents of the observable reads

jqpξ =
∫

d3k

(2π)3
ξ1

∂ε1

∂k
f1, (25.28)

and the molecular currents we have obtained as [78]

jmol
ξ = 1

2

∫
d3kd3 pd3q

(2π)9
D(ξ2Δ2 − ξ3Δ3 − ξ4Δ4). (25.29)

It is the balance of observables carried by the different spatial off-sets.
The additional gain on the right side might be due to an energy or force feed from

the outside or the entropy production by collisions.
Due to its intriguing vector character, let us give the Navier-Stokes equation

explicitly. The inertial force density is given by the time derivative of the momentum
density Q. The deformation force density is given by the divergence of the stress
tensor. The stress tensor we derived from the balance between the inertial and the
deformation forces

∂

∂t

(
Q

qp
j + Qmol

j

)
= −

∑
i

∂

∂ri

(
J

qp
i j + J mol

i j

)
(25.30)

with the momentum density consisting of the quasiparticle

Q
qp
j =

∫
d3k

(2π)3
k j f1 (25.31)
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and molecular part

Qmol
j = 1

2

∫
d3kd3 pd3q

(2π)9
(k j + p j )DΔt , (25.32)

which gives the mean momentum carried by a molecule formed with the rate D and
lifetime Δt .

The total stress tensor formed by the quasiparticles reads

J
qp

i j =
∑

a

∫
d3k

(2π)3

(
k j

∂ε

∂ki
+ δi jε

)
f − δi jE

qp (25.33)

with quasiparticle energy functional [42]

E qp =
∑

a

∫
d3k

(2π)3
fa(k)

k2

2m

+1

2

∑
ab

∫
d3kd3 p

(2π)6
fa(k) fb(p)Re tSC(ε1 + ε2, k, p, 0)

(25.34)

instead of the Landau functional which is valid only in local approximation.
The collision-flux contribution, Eq. (25.29), reads

J mol
i j = 1

2

∑
ab

∫
d3k d3 p d3q

(2π)9
D
[
(k j − q j )Δ3i + (p j + q j )Δ4i − p jΔ2i

]
.

(25.35)

It possesses a statistical interpretation as well. The two-particle state is characterized
by the initial momenta k and p and the transferred momentum q. The momentum
tensor is the balance of the momenta carried by the corresponding spatial off-sets
weighted with the rate to form a molecule D.

For the density ξ = 1 we do not have a gain. For momentum gain ξ = k j we get

F
gain
j =

∑
ab

∫
d3k d3 p d3q

(2π)9
DΔK j . (25.36)

Dividing and multiplying by Δt under the integral, we see that the momentum gain
is the probability DΔt to form a molecule multiplied by the force ΔK /Δt exercised
during the delay timeΔt from the environment by all other particles. Thismomentum
gain, Eq. (25.36), can be exactly recast together with the term of the drift into a spatial
derivative [42] ∑

a

∫
d3k

(2π)3
ε

∂ f

∂r j
+ F

gain
j = ∂E qp

∂r j
(25.37)
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of the quasiparticle energy functional, Eq. (25.34). Similarly, the energy gain com-
bineswith the drift into the total time derivative of the quasiparticle energy functional,
Eq. (25.34) ∑

a

∫
d3k

(2π)3
ε
∂ f

∂t
− I E

gain = ∂E qp

∂t
. (25.38)

The only remaining explicit gain is the entropy gain

I S
gain = −kB

2

∑
ab

∫
d3k d3 p d3q

(2π)9
f1 f2(1 − f3 − f4)

×2πδ(ε1 + ε2 − ε3 − ε4)|tSC|2 ln f3 f4(1 − f1)(1 − f2)

(1 − f3)(1 − f4) f1 f2
,

(25.39)

while the momentum gain and energy gain are transferring kinetic into correlation
parts and do not appear explicitly. In Ref. [79] it is proved that this entropy gain is
always positive establishing the H -theorem including single particle and two-particle
quantum correlations.

25.4 Applications of Nonlocal Kinetic Theory

25.4.1 Low-Energy Heavy Ion Reactions

During a heavy ion collision we can access a state of matter which gives insight into
special aspects of nonequilibrium processes. The dominant features are that we have
strong short range interactions of typically 1 fm = 10−15 m and the product of the
range of interaction with Fermi momentum is in orders of one characteristic for a
degenerate quantum system. Since the radius of typical nuclei is R ≈ 1.2A1/3 fm
(where A is the nucleus baryon number) we see that the product of the radius with
Fermi momentum is of few � indicating strong spatial inhomogeneity.

Numerical simulations extensively used to interpret experimental data from heavy
ion reactions, are based either on the Boltzmann (BUU) equation or on the quan-
tum molecular dynamics (QMD). Due to their quasiclassical character, they offer a
transparent picture of the internal dynamics of reactions and allow one to link the
spectrum of the detected particles with individual stages of reactions. They fail, how-
ever, to describe some energy and angular distributions of neutrons and protons in
low and mid energy domain [80–82]. Appreciable values of the collision delay and
space displacements show that the nonlocal collisions should be accounted for.

The nonlocal collisions have been implemented in Ref. [74] within the QMD
and in Refs. [75, 76] within the BUU equation. Within the local approximation the
distribution of high-energy protons is too low to meet the experimental values. The
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Fig. 25.3 The experimental charge distribution ofmatter (dotted line) versus velocity in comparison
with in the BUU (thin solid line) and the nonlocal model with quasiparticle renormalization (thick
line). Redrawn after Ref. [77]

influence of the nonlocal collisions on the reaction of heavy ions has been studied
for the 181

73Ta + 197
79Au reaction at 33 MeV [77]. Except for the nonlocal picture, a

sufficiently large neck has been achieved by additional inclusion of fluctuations in
the Boltzmann (BUU) equation [83, 84], resulting in Boltzmann-Langevin pictures
[85–90]. TheBoltzmann-Langevin equation has been derived assuming an additional
coarse graining of phase-space [91, 92]. Fluctuations to the time-dependent Hartree-
Fock (TDHF) equation have been analyzed before in Refs. [93, 94] and tested in
Ref. [95].

INDRA observation shows the enhancement of emitted matter in the mid-rapidity
region [96, 97]. The simulations can be compared to the experimental data of the
Ta + Au collision [77]. In Fig. 25.3, the theoretical and experimental charge density
distributions are compared. The experimental charge density distribution has been
obtained using the procedure described in Ref. [98]. The data are represented by
light gray points, the standard BUU calculation by the thin line and the nonlocal
BUU with quasiparticle renormalization calculation by the thick line. A reasonable
agreement is found for the nonlocal scenario including quasiparticle renormalization
while simple BUU fails to reproduce mid-rapidity matter.

The comparison of the time evolutions of the transverse energy for 8 fm impact
parameter can be seen in Fig. 25.4. We recognize that the nonlocal collision scenario
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Fig. 25.4 The time evolution of the transverse energy including the Fermi motion for Ta + Au at
Elab/A = 33 MeV and 8 fm impact parameter in the local BUU (black line), the nonlocal BUU
(dashed line), the local BUU with doubled cross section (dashed dotted line) and the nonlocal
scenario with the quasiparticle renormalization (long dashed line)

dissipates much more energy due to the inelastic character than by increasing the
collision rate. The transverse energies including quasiparticle renormalization have
a different period of oscillation which corresponds to a giant resonance. This period
becomes longer for the case of quasiparticle renormalization which means that the
compressibility decreases. In other words, the quasiparticle renormalization leads to
a softer equation of state.

As documented by the improvement of the high-energy proton production and
the midrapidity charge density distribution, the nonlocal treatment of the binary
collisions brings a desirable contribution to the dynamics of heavy ion reactions.
According to the experience from the theory of gases, one can also expect a vital
role of non-localities in the search for the equation of state of the nuclear matter. It is
encouraging that the nonlocal corrections are easily incorporated into the BUU and
QMD simulation codes and do not increase the computational time.

25.4.2 Relation of Pairing Density to Correlated Density

In superconductors the correlated density which we found as the consequence of the
time-nonlocality of the collision process, Eq. (25.27), becomes visible as the differ-
ence between the total and normal density ncorr = n − nn . The Wigner distribution
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function has a two-part structure [99]

ρ = 1

2

(
1 + ξ

E

)
f (E) + 1

2

(
1 − ξ

E

)
f (−E) = 1

2
− ξ

2E
tanh

1

2
βE, (25.40)

where ξ = εp − μ is the free-particle energy εp minus the chemical potentialμ. The
quasiparticle energy E = √ξ 2 + Δ2 describes the influence of the superconducting
gap Δ on the excitation spectrum of the superconducting state. The Fermi-Dirac
distribution is f (x) = 1/(eβx + 1) with the inverse temperature β = 1/kBT . The
density n is obtained by the momentum integral over Eq. (25.40) and introducing the
density of states h(ξ) = 2

∑
p 2πδ(ξ − εp), one has

n =
∞∫

−μ̄

dξ

2π
h(μ̄ + ξ)

(
1

2
− ξ

2E
tanh

1

2
βE

)
. (25.41)

Here, we account for a possible electrostatic potential ϕ and the velocity v of super-
conducting electrons by μ̄ = μ − eϕ − mv2/2. For a vanishing gap we obtain the
corresponding density nn of normal electrons with the chemical potential μ̄ by
nn = n(Δ = 0). The difference

ncorr = n − nn (25.42)

describes the correlated density. In the ground state the normal density turns into

nn = 2
∑

p

Θ(μ̄ − εp) ≈ n0 −
(

eϕ + m

2
v2
) h(μ)

2π
(25.43)

where we have expanded μ̄ in first order around the Fermi energy, and n0 describes
the number of particles with no motion and no electrostatic potential. The correlated
density Eq. (25.42) splits into two parts in the zero-temperature limit of Eq. (25.41)

ncorr = 1

2

∞∫
0

dξ

2π
h(μ̄ + ξ)

√
ξ 2 + Δ2 − ξ√

ξ 2 + Δ2
− 1

2

0∫
−μ̄

dξ

2π
h(μ̄ + ξ)

√
ξ 2 + Δ2 + ξ√

ξ 2 + Δ2
,

(25.44)

which vanishes for vanishing gap. Since the gap is only nonzero in the vicinity of
the Fermi level given by the Debye frequency ωD we can restrict the integration to
the ±ωD-range. Expanding the density of states for ξ < ωD we obtain finally [100]
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ncorr = ∂h

∂μ

Δ2

4π

⎡
⎣ln

⎛
⎝ωD

Δ
+
√

ω2
D

Δ2
+ 1

⎞
⎠− 1

1 +
√
1 + Δ2

ω2
D

⎤
⎦ ≈ ∂h

∂μ

Δ2

4π
ln

(
2ωD√

eΔ

)

(25.45)

for ωD � Δ in the last step.
Since the total system should stay neutral, we expect n = n0 and the two con-

tributions, nn − n0 according to Eq. (25.43) and ncorr of Eq. (25.45), should cancel.
Therefore the required electrostatic potential must read

eϕ = −m

2
v2 + ∂ ln h

∂μ

Δ2

2
ln

(
2ωD√

eΔ

)
. (25.46)

This resulting electrostatic potential has the form of a Bernoulli potential. Its purpose
is to compensate the contribution due to diamagnetic currents and the associated
inertial and Lorentz forces. It has a part directly linked to the gap.

The great hope was to measure the Bernoulli potential in order to access directly
the gap parameter [101]. The experimental attempts to measure it, however, have
yielded no result [102, 103]. Why no signal of thermodynamic corrections is seen
remained a puzzle for nearly 30 years. The solution was found by a modification
[104] of the Budd-Vannimenus theorem [105] which shows that the surface dipoles
cancel the thermodynamical corrections exactly for homogeneous superconductors.
The Budd-Vannimenus theorem has been applied also to finite Fermi systems within
an exactly solved model to show the BEC-BCS transition in [106].

The electrostatic potential can leak out of a superconductor by three types of
charges: (i) The bulk charge which describes the transfer of electrons from the inner
to the outer regions of vortices creating a Coulomb force. This force has to balance
the centrifugal force by the electrons rotating around the vortex center, the outward
push of the magnetic field via the Lorentz force and the outward force coming from
the fact that the energy of Cooper pairs is lower than the one of free electrons such
that unpaired electrons in the vortex core are attracted towards the condensate around
the core [107]. (ii) The surface charge [108] distributed on the scale of the Thomas-
Fermi screening length. (iii) The surface dipole which cancels all contributions of
pairing forces [109] resulting in an observable surface potential of

eφ0 = − fel
n

. (25.47)

The latter one gives rise to characteristic features predicted for experimental obser-
vations. The quadrupole resonance lines in the high-Tc material YBCO have been
measured [110] and explained in [111, 112].
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25.5 Summary

At short time scales after a sudden quench the correlations need time to be formed.
This allows to describe the transient time scales by long-ranged time-dependent
meanfield fluctuations. This transient time scale is essentially determined by the off-
shellmotion.At later timeswhen strong correlations are formed there is a cancellation
of off-shell processes in the kinetic equation using a proper extended quasiparticle
picture. The remaining modifications of the quantum Boltzmann equation consist
in the nonlocal collision scenario where the off-sets are uniquely determined by
the phase shift of the T -matrix and the quasiparticle energies modifying the drift.
The resulting balance equations show besides the quasiparticle parts of the Landau
theory also explicit two-particle contributions of short living molecules. The energy
and momentum conservation is ensured due to an internal transfer of energy and
momentumanalogously to a latent heat. Only for the entropy an explicit gain remains.

The entropy as a measure of complexity, or inversely as the loss of information
[113], plays a central role in processes like nuclear or cluster reactions [114], where
the kinetic and correlation energy of projectile and target particles transform into
heat. In nuclear matter, mainly the single-particle entropy [115–119] is discussed as
in ultra-cold atoms [120]. The equilibrium entropy has been given in a form of cluster
expansionwhere the two-particle part is given by the two-particle correlation function
[121] which has been calculated numerically for different systems [122, 123]. The
majority of approaches calculate the classical entropy in various approximations
[124, 125]. Here we have obtained the quantum two-particle entropy explicitly in
terms of phase shifts of the scattering T -matrix in nonequilibrium. The second law
of thermodynamics holds also in nonlocal kinetic theory. The single-particle entropy
can decrease on cost of the molecular part of entropy describing the two-particles in
a molecular state. Overall, the H -theorem is maintained [79].

The numerical solution of the nonlocal kinetic equation requires nomore time than
solving the usual Boltzmann equation. Two distinct examples from nuclear collision
and from superconductivity have been shortly discussed as illustrative examples.
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109. P. Lipavský, K. Morawetz, J. Koláček, J.J. Mareš, E.H. Brandt, M. Schreiber, Phys. Rev. B

70, 104518 (2004). https://doi.org/10.1103/PhysRevB.70.104518
110. K. Kumagai, K. Nozaki, Y. Matsuda, Phys. Rev. B 63, 144502 (2001). https://doi.org/10.

1103/PhysRevB.63.144502
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